30 Algebra

2.9 Square matrices and determinants

Now $N \times N$ matrices $\tilde{A} = (a_{jk})$ j, k = 1, ..., N

Definition 25

$$\tilde{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix}$$

$$\det \left(\tilde{A} \right) = \begin{vmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{vmatrix} = \sum_{P(N)} (-1)^{j(P)} a_{1,j_1} a_{2,j_2} \cdots a_{N,j_N}$$

where P(N) are all permutations of the numbers 1, ..., Nand j(P) is the number of changes between (1, ..., N) and $(j_1, ..., j_N)$

 \Rightarrow definition not practical for a calculation of $\det(\tilde{A})$. Therefore, calculation via successive expansion in subdeterminants (Laplace rule): N=1: $\det(a)=a$ $a\in\mathbb{R}$.

As we will see the determinant is the (only) totally antisymmetric multilinear operation acting on the components of a matrix. Corresponding to the Kronecker-symbol sometimes a notation using the totally antisymmetric function $\epsilon_{i,j,...,k}$ (Levi-Civita symbol) is helpful for the formal calculation of a determinant:

$$\det\left(\tilde{A}\right) = \sum_{P(N)} (-1)^{j(P)} a_{1,j_1} a_{2,j_2} \cdots a_{N,j_N} = \sum_{j_1,j_2,\dots,j_N=1}^N \epsilon_{j_1,j_2,\dots,j_N} a_{1,j_1} a_{2,j_2} \cdots a_{N,j_N}$$

 $\epsilon_{j_1,j_2,...,j_N}$ is zero if any of the indices are equal, it is $1 = \epsilon_{1,2,...,N}$, and changes it's sign for each change in the order of indices. (Hint: this are exactly the properties of the quantum numbers of Fermions according to the Pauli principle, the determinant or $\epsilon_{i,j,...,k}$ are therefor often used to calculate many particle states in quantum mechanics).

The geometrical interpretation in 3D of a determinant will be given in section 2.15 and a more general interpretation in section 2.16.

Calculation by Laplace rule:

$$\det (\tilde{A}) = \sum_{j=1}^{N} a_{jk} A_{jk} = \sum_{j=1}^{N} a_{kj} A_{kj}, \text{ for } N > 1$$

development via the column/line, adaptive expansion by column or row where: $k \in (1, ..., N)$ arbitrary and cofactor of a_{jk} in \tilde{A}

$$A_{jk} = (-1)^{j+k} \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,k-1} & a_{1,k+1} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2,k-1} & a_{2,k+1} & \cdots & a_{2N} \\ \vdots & & & & & & \\ a_{j-1,1} & a_{j-1,2} & \cdots & a_{j-1,k-1} & a_{j-1,k+1} & \cdots & a_{j-1,N} \\ a_{j+1,1} & a_{j+1,2} & \cdots & a_{j+1,k-1} & a_{j+1,k+1} & \cdots & a_{j+1,N} \\ \vdots & & & & & & \\ a_{N1} & a_{N2} & \cdots & a_{N,k-1} & a_{N,k+1} & \cdots & a_{NN} \end{vmatrix} \stackrel{\text{determinants of } \tilde{A} \text{ where }}{=} i^{th} \text{ line and } k^{th} \text{ column are erased}$$

Examples:

(i)
$$\left|\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right| = a_{11}a_{22} - a_{21}a_{12} \quad \text{development via } 1^{\text{St}} \text{ column}$$

(ii)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} a_{23} \\ a_{32} a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} a_{23} \\ a_{31} a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} a_{22} \\ a_{31} a_{32} \end{vmatrix}$$
$$= a_{11} a_{22} a_{33} - a_{11} a_{32} a_{23} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{12} a_{21} a_{32} - a_{13} a_{31} a_{22}$$

⇒ calculation of larger determinants still difficult!

Calculation rules for determinants:

- (a) Determinants are antisymmetric for changing the order of rows or columns, i.e. $|\vec{a} \ \vec{b} \ \cdots | = |\vec{b} \ \vec{a} \ \cdots |$
- (b) Determinants vanish if two vectors are identical, i.e. $|\vec{a} \ \vec{a} \ \cdots | = |\vec{a} \ \vec{a} \ \cdots | = 0$
- (c) Determinants are linear, i.e. $|\vec{a} + \vec{b} \cdots| = |\vec{a} \cdots| + |\vec{b} \cdots|$
- (d) Determinants are linear, i.e. $\mid \alpha \vec{a} \cdots \mid = \alpha \mid \vec{a} \cdots \mid$
- (e) Adding linear combination of other rows/columns does not change Determinants, i.e. $\left| \begin{array}{ccc} (\vec{a} + \beta \vec{b}) & \vec{b} & \cdots \end{array} \right| = \left| \begin{array}{ccc} \vec{a} & \vec{b} & \cdots \end{array} \right| + \beta \left| \begin{array}{ccc} \vec{b} & \vec{b} & \cdots \end{array} \right| = \left| \begin{array}{ccc} \vec{a} & \vec{b} & \cdots \end{array} \right|$
- (f) Subtracting projections of (row/column)-vectors does therefor not change the determinant, so the determinant calculates the product of the length of a set of orthogonal vectors, i.e the volume spanned up by the set of vectors. If the volume is not zero the set of vectors is linearly independent.