Alloying Elements and Properties of Steel

- Here is a comprehensive list of are a few major alloying elements for steel, what they do, and what they are used for.
 - For clarity, there are no links. Look up these modules for explanations:
 - Science of Alloying
 - Alloying Elements in Detail
 - Properties of Steel

Element	Stabilizes	Hardness Increase Mechanism	Tendency to form hard Carbides	Major / Minor Functions
Manganese Mn	Austenite Open γ-field	Moderate increase Powerful solution strengthener	Middle	 Takes care of Sulphur (\$). Makes special steels in high concentrations Cheap increase of hardenability.
Silicon Si	Ferrite Closed γ-field	Hardens, but reduces ductilityModerate increase	None	1. Deoxidation ("killing") of liquid steel 2. Increases electrical resistivity (important for transformer cores). 3. Improves oxidation resistance.
Aluminum Al	Ferrite Closed γ-field	Small Grain size hardening	No carbides but nitride.	 Deoxidation ("killing") of <i>liquid</i> steel. Improves oxidation resistance.
Chromium Cr	Ferrite Closed γ-field	Moderate increase (Secondary) prec. hardening	Strong	 Corrosion resistance. Strength + oxidation resistance at high T. Abrasion resistance (needs high C, too).
Titanium Ti	Ferrite Closed γ-field	Strong increase; Prec. hardening Grain size hardening	Extremely strong	1. Oxygen, nitrogen and sulphur scavenger. Forms hard carbides. prevents grain growth. 2. Prevents local depletion of carbon in stainless steels due to Cr-carbide formation
Vanadium V	Ferrite Closed γ-field	Very strong increase Prec. hardening Grain size hardening Moderate solid solution hardening	Very strong	 Restricts grain coarsening of austenite. Increases hardenability. Delays softening during tempering.
Nickel Ni	Austenite Open γ-field	Mild increase	None	1. Enables austenitic steels. 2. Enables Invar steel

Molybdenum Mo	Austenite Open γ-field	Strong increase Prec. hardening Grain size hardening	Very strong	 Improves corrosion resistance of stainless steels. Prevents embrittlement of certain Ni/Cr steels. Keeps strength at higher T. 4. Provides high abrasion resistance.
Boron B	? Major changes i at very small concentrations	Strong increase Prec. hardening Grain size hardening	Very strong	 High strength steel Nitrogen scavenger Replacement for expensive elements without compromising properties