
Grain Boundary - Advanced

 Geometric Description of a Grain Boundary
For starters, we ask ourselves how we can describe the basic geometry of a nice planar grain boundary.

One way of tackling this is to cut (in your brain) one crystal in a plane that is to become the grain boundary plane
in the starting crystal 1. The cut-off part we rotate arbitrary amounts around all three axes. Then we join the
original crystal 1 with its rotated brother.
Of course, the two parts will not fit, so we remove or fill in matter as required.
So how many numbers do you need to describe what we just did? How many numbers are needed to describe
the basic geometry of a planar grain boundary?
 

The formal production of a grain boundary

   
Let's make it short: We need 5 numbers to describe what we did: Three number (=rotation angles, for example) to
describe the relative rotation of the grains to each other, and two numbers to describe the position of the grain
boundary plane.
One is inclined to think hat one needs three numbers for determining the exact position of the grain boundary
plane too, since a normal vector perpendicular on this plane (the red vector in the drawing above) has three
components. Yes, but a normal vector has a defined magnitude and we don't care for that. The length on the
vector characterizing the grain boundary plane is unimportant, and that means that two numbers will do.

What we want to know about a grain boundary is its atomic structure and, related to that, its energy EGB (per cm2, of
course). We have a formidable task ahead, because the quantities we are after are functions of at least 5 variables!
And that's only for the simple problem of a planar boundary. If the grain boundary is curved, which it needs to be to
enclose a grain, the two parameters characterizing the grain boundary plane, become functions of the position.

Why do we want to know the grain boundary energy? Because the basic question we have is:

   

Are there special grain boundaries with
particular low energies?

   
If there are, we might expect that crystals go for them; they want to minimize their (free) energy after all.
You might think that the question is moot, because as soon as the first small crystallites form at some nuclei,
their orientation is given. When those crystallites grow together, the relative orientation of the grains is what it is.
Nothing the crystal can do about it.
You are almost right. The relative orientation of the grains is indeed whatever it is. But the crystal, being much
smarter than you as far as grain boundaries (and possibly a few other things) are concerned, still knows a trick or
two about minimizing energy.
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 Minimizing Energy With Respect to the Grain Boundary Plane
Let's start assuming that the orientation relation between the two grains is given. The actual grain boundary still could
be on any plane with respect to some coordinate system, for example the Bravais lattice of grain 1. The specific and
simpler question is now: Are there any special low-energy planes for the given orientation?
You bet there are. Not that I can demonstrate this for any orientation and any plane, but one example is enough to get
the gist of the argument across.

   

Possible Boundary planes in a "diamond twin"

   
We are looking at a very special orientation between two grains of a crystal, called "twin" orientation. We have
a diamond-structure, but twins work for any lattice: one grain is simply the mirror image of the other one. Two
grain boundary planes are shown and it is ridiculously obvious that the one on the right is far, far "better",
meaning it has a far lower energy then the one on the left.
On the right, all atoms find partners at the proper distance and can bond happily. On the left, you can't even draw
what is going to happen. A lot of atoms around this boundary plane will be very unhappy.
It is clear that something like this happens for any grain orientation relationship, and that there are always some
special planes with lower energy than the rest. So what is the crystal going to do about this?
It will break up the boundary plane into properly oriented facets as shown here.

   

Facetting of Grain Boundary Planes to Lower the
Energy

   
All the crystal needs to do is to move a few atoms close to the boundary a little bit. This is not difficult at high
temperatures, when atoms are mobile.

We might safely assume that grain boundaries will be facetted into low energy planes. What kind of planes that are
for some arbitrary orientation is not so easy to predict, however. Nevertheless, facetting will happen. It might be on a
scale so small that we don't see it easily but it will be there. No more needs to be said about this topic.

   

 Interlude: Making Low Angle Grain Boundaries with Dislocations
Let's make the most simple grain boundary imaginable by using the recipe from above. What we do then is to cut the
crystal in twain and rotate the upper part. To do that as simply as possible, we rotate only around one axis and keep
the rotation angle small.

There are two basic ways of doing this, called "twist" and "tilt". When you make a twist boundary, the axis of
rotation is in the plane of the cut and the future grain boundary, if you make a tilt boundary, the axis of rotation
is at right angles to the plane of the cut and the future grain boundary. An arbitrary boundary can then be made
by combining twist and tilt.
The figures below illustrate that. They also show that you can make one and the same boundary in two ways, at
least as far as the "twin boundary" in a diamond crystal is concerned that is shown once more below. That
doesn't prove that you can do that for all possible boundaries but makes clear that there could be some
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complications with this recipe. Rest assured that there are! And that you really do not want to learn more about
it.

   

Making the same diamond twin boundary in two
ways, using either "twist" or "tilt"

   
Here I only want to show that you can make so-called "small-angle" grain boundaries of all kinds by combining
the two special periodic dislocation arrangements that we get for either a pure tilt or a pure twist small-angle grain
boundary.
What is a small-angle grain boundary? Any boundary where you twist or tilt only by a few degrees, so that the two
grains have almost the same orientation.
Here is the way it's done:

   

Pure tilt small angle grain boundary; principle
and the real thing

Pure twist boundary; principle and the real thing
Source: The drawing in the lower left goes back, I believe, to
Read .The other pictures are mine.

   
Contrasted are schematic drawings and a HRTEM images of the real thing. In the lower picture, just one set of
screw dislocation is visible in the HRTEM image by the shift induced in the lattice planes above the grain
boundary plane.
Refer to the "science of dislocation" module for general information and in particular to the screw dislocation stuff
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The way a tilt boundary "works" by employing edge dislocations is obvious. You just need a parallel array of
dislocation spaced at some distance that determines the tilt angle. For a twist boundary you need a network of
screw dislocations. It could be square as shown above or here, or hexagonal and complicated as in this picture.
Of course, this simple approach only works for small misorientation angles of at most a few degrees; too large an
angle, and the dislocations have to get so close that it doesn't make sense anymore.
Mix the two kinds of dislocation arrangements, and you get rather complex but well-defined and understood
dislocation structures for any small-angle grain boundary with some twist and some tilt.

This is complicated but the important thing to realize is why the crystal is actually doing all this. It introduces
dislocations for one reason only. All the mismatch caused by having grains with different orientations is downloaded
into just the core of the dislocations. In between the dislocations the match of the two lattices is perfect.

In other words: The crystal prefers to have a large pain concentrated in a small area with large painless regions in
between to a large area with medium pain everywhere. Who wouldn't. Going shopping with your wife in a major
way once in a while is by far preferable to a bit of shopping all the time.
That will also be the guiding principle for what to do in arbitrary large-angle grain boundary.

   

 Structure of Arbitrary Grain Boundaries
There are infinitely many ways you can lie in bed. On your back, on your side, legs pulled up or down, and so on. But
a few well-defined positions are just a lot more comfy that all the others. There are infinitely many ways you can
orient a grain with respect to the other. But a few well-defined orientations just have a lower energy than all the others.

The crystal knows what those particular comfy "low sigma" orientations are: orientations where right at the grain
boundary as many atoms as possible have the same position in grain 1 and in grain 2. And no, it doesn't matter
where exactly the grain boundary is positioned; the crystal can always make itself comfortable in this respect by
facetting .
It is easy to get an idea about these special orientations. Look at the animation below. We make a twist
boundary but we won't stop at small angles..

   

   
What you see is that at certain angles there is a perfect match of lattice points. Put atoms there and they have
the same position in both grains.

This can be generalized for general lattices and three dimensions; note that I emphatically do not say "easily
generalized". Just let two three-dimensional lattices interpenetrate and rotate one in all directions. Calculating the
lattice of coinciding points or the so-called O-lattice, a name forever associated with W. Bollmann, is not something
lightly undertaken with just some high school math. And that's just the comparatively simple beginning of calculating
what kind of tricky structure the crystal will now put up if it finds itself close to, but not exactly in, some preferred "low
sigma" orientation.

So what does that "low sigma" mean? Well, if there is some coincidence between points of the two lattices,
those points define a lattice, too. The volume of an elementary cell of this "coincidence site lattice" or CSL,
divided by the volume of the elementary cell of the crystal lattice, will always be an odd integer that is given the
assignation sigma or Σ. Our old friend, the twin boundary, now carries the assignation Σ 3 boundary.
Here are drawings (of course only in 2 dimensions) of the Σ 3 or twin boundary and a Σ5 boundary, the next best
thing.
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Interpenetrating cubic lattices producing a
Σ3 and a Σ5 CSL or "Coincidence Site Lattice"

 
But let's not go into details, e.g. why only odd-numbered sigma values exist, but draw a simple conclusion:

   

There are special low-energy orientations.
The crystal will do something if it finds

one of its grain boundaries close to
such an orientation.

   
What the crystal will do is to generate a dislocation arrangement that produces a small-angle grain boundary in such
a way that the additional "small angle" added to the basic large angle defining the boundary, will orient the grain
boundary in the exact low-energy and typically low-sigma orientation.

It's the old principle. Invest some energy into the making of a dislocation network, to gain a lot of energy because
you now have a low-energy boundary.

There is a catch to this, however. The dislocation arrangement that by itself would define a low-angle grain boundary
needs to sit right in the actual large-angle boundary since it must belong to both grains. But how do you define a
dislocation in two lattices that are not connected in a continuous way?

You don't because you can't. That's why grain boundary dislocations are defined in a new lattice, a lattice that is
common to both grains. The coincidence site lattice is common to both grains, so we could take that lattice and
make a dislocations by the standard "cut-and-shift" procedure. You would make monster dislocations in this way,
because you need to shift a large amount since the CSL lattice is always much larger than the lattices of the
crystals. Dislocations in the CSL lattice would have large Burgers vectors, in other words. If you would do that
(and I leave open how you would do that in a real grain boundary in a real crystal and not just on a piece of
paper), you would be in for a surprise. Your monster dislocations would split into a bunch of "small" dislocations
with small Burgers vectors. Those are what we call "grain boundary dislocations".
They can do this because if you look closely at the geometry once more, you recognize that there is another
lattice common to both crystals with unit vectors smaller than the actual crystal lattice. It is called the "DSC "
lattice for "displacement shift complete". Not the best of all possible names, but that's what it is called. Just for
the hell of it, I show you two of these dislocations (edge type) in a S5 boundary:
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Grain boundary dislocation in a Σ5 boundary

   
The red points belong to lattice 1, the green ones to lattice 2. The blue ones are common in both lattices and
thus define the coincidence site lattice. The black lines constitute the DSC lattice; here it is simply the lattice
common to all lattice points. A cut (blue or pink line) combined with a shift (red vector) produces an (edge)
dislocation in the DSC lattice. This dislocation moves the boundary as shown, the yellow "structure units"
illustrate that.
Imagine a regular array of these dislocations, and you have a small angle boundary superimposed on the Σ5
boundary. If the real boundary would have been off the Σ5 orientations by a small angle, it now would be turned
into the precise Σ5 orientation.

All crystals do that all the time. They have no problem in figuring out the best way to restructure their boundaries in
the way described above. And that's why we see all these "grain boundary dislocations" all the time in our electron
microscopes.

We know why these dislocations are there in principle. However, if we want to calculate the details, it gets
hellishly difficult. Be happy that I won't go into how it is done.

   

© H. Föll
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