3.3.2 Ways to Measure Hardness

When you measure hardness, you press some hard and small object (the indenter) into the material to be tested with sufficient force to leave a permanent impression. The means that you always deform plastically or fracture you specimen locally. The "size" of the indentation gives you the hardness number.

Methods differ by the material used for the indenter, its size and geometry, how you press, and how you measure.

Since hardness plays a big role in sword blade lore, I give you an overview of the various methods employed.

Туре	Indenter			Procedure
	Description	Geometry	Shape	
Brinell	10 mm sphere Variable load			Hardness number from load, depth and diameter of indentation.
Vickers	Diamond pyramid; square base			Hardness number from load and width of indentation.
Кпоор	Diamond pyramid; rectangular base			Hardness number from load and depth of indentation.
Rockwell A C D	Diamond cone	120°		Hardness number from fixed load and depth of indentation.
Rockwell B F G	1/16 inch steel sphere			
Rockwell E H	1/8 inch steel sphere			

The fact that there are many ways to measure hardness, producing different numbers for the same specimen, graphically demonstrates that each method has it pros and cons. I won't go into that, however. As far as steel is concerned, numbers are usually given in either Vickers or Rockwell. With the <u>figure from before</u> you can easily convert from one scale to the other.

Once more: No hardness test can compete with a tensile test; the latter gives far more information and numbers useful for calculations. But hardness tests are relatively cheap, easy to do, and in particular applicable to very small samples and samples with weird shapes.

Just to put hardness in perspective, the following table gives the Vickers hardness of some common materials. Note that there are variations for one and the same material not only for steel but for almost everything. The number given thus must be seen as a typical harness.

Metals	Vickers hardness		Ceramics	Vickers hardness				
Tin (Sn)	5		Limestone	250				
Aluminum (Al)	25		Magnesia (MgO)	500				
Gold (Au)	35		Window glas	550				
Copper (Cu)	40		Granite	850				
Pure iron (Fe)	80		Quartz (SiO ₂)	1200				
Good tin bronze (Cu + 10% Sn)	220		"China" (Mostly Al ₂ O ₃)	2500				
Mild steel	140		Tungstencarbide (WC)	2500				
Hardened steel	900							
Polymers								
Polypropylene	7		Polyvinylchloride (PVC)	16				
Polycarbonate	14		Ероху	45				