6.1.4 Summary to: 6.1 Materials and Processes for Silicon Technology

- Making "metallurgical" (= "dirty") Si_{met} is easy: ⇒
 - A large scale Simet production (> 1 Mio tons/a) exists for metallurgical ("alloying") and chemical ("silicones") uses
- A small amount of Si_{met} (some 20.000 to/a) is purified (factor 10⁹ or so) to "semiconductor grade Si" ⇒
 - Produce high-purity trichlorosilane (SiHCl₃) gas in a reactor and distill.
 - Use SiHCl₃ and H₂ to deposit Si on some Si core by a CVD process
- The final result is ultra-high purity (and expensive) **poly Si** (already doped if so desired)
- Growing a "perfect" single crystal from this poly-Si is not easy but possible.
 - The major crystal growth method is the CZ (= Czrochalski) method: "Pull" the crystal from a crucible full of molten Si. ⇒
 - Some (ususally < 300 mm diameter) crystals are grown by the FZ (= float zone) method. Somewhat better perfection, but more expensive than CZ.
- Major problem: Impurity segregation = general tendency for most impurities (including doping atoms) to remain (= enrich) in the melt.
 - Segregation coeffcient = c_{cryst}/c_{melt} at interface, often << 1 and dependent on parameters like growth speed (usually a few mm/min).</p>
 - + Crystal is purer than melt.
 - It is practically impossible to grow a crystal with a uniform impuritiy (including dopant!) concentration along its length.
- Produce wafers by cutting, grinding and polishing
 - Extreme precision for a mass product is needed.
 - "Flats" or "notches" (for wafers > 200 mm) identify the crystallographic orientation and the doping type.
 - Beware! Flats are often custome specific and different from the norm. ⇒

$$SiO_2 + 2C \Rightarrow Si_{met} + 2CO$$

 $Si + 3HCI \Rightarrow SiHCl_3 + H_2$
 $SiHCl_3 + H_2 \Rightarrow Si + 3HCI$

Questionaire

Multiple Choice questions to all of 6.1