5.5.1 Summary: General Aspects of Silicon Technology

- Essentials of the bipolar transistor:
 - High emitter doping (N_{Don} for npn transistor here) in comparison to base doping N_{Ac} for large current amplification factor $\gamma = I_C/I_B$.
 - $N_{Don}/N_{Ac} \approx κ = injection ratio.$

$$\gamma \approx \frac{N_{Don}}{N_{Ac}} \cdot \left(1 - \frac{d_{base}}{L}\right)$$

- Small base width d_{base} (relative to diffusion length L) for large current amplification.
- Not as easy to make as the band-diagram suggests!

- Gate voltage enables Source-Drain current
- Essential process. Inversion of majority carrier type in channel below gate by:
 - Drive intrinsic majority carriers into bulk by gate voltage with same sign as majority carriers.
 - Reduced majority concentration n_{maj} below gate increases minority carrier concentration n_{min} via mass action law

$$n_{\text{maj}} \cdot n_{\text{min}} = n_{\text{i}}^2$$

- An inversion channel with nmin > nmaj develops below the gate as soon as threshold voltage UTh is reached.
- Current now can flow because the reversely biased pnjunction between either source or drain and the region below the gate has disappeared.

- High capacity C_G of the gate electrode gate dielectric Si capacitor = high charge Q_G on electrodes = strong band bending = low threshold voltages U_G
- It follows:
 - Gate dielectric thickness d_{Di} ⇒ High breakdown field strength U_{Bd}
 - Large dielectric constant ∈_r
 - · No interface states.
 - Good adhesion, easy to make / deposit, easy to structure, small leakage currents, ...

$$Q_{\rm G} = C_{\rm G} \cdot U_{\rm G}$$

Example: $U = 5 \text{ V}, d_{\text{Di}} = 5 \text{ nm} \Rightarrow E = U/d_{\text{Di}} = 10^7 \text{ V/cm}!!$

$$\in_{\mathsf{r}}(\mathsf{SiO}_2) = 3.9$$

Integration means:

- 1. Produce a large number (up to 1.000.000.000) of transistors (bipolar or MOS) and other electronic elements on a cm² of Si
- 2. Keep thoses elements electrically insulated from each other.
- 3. Connect those elements in a meaningful way to produce a system / product.
- An integrated bipolar transistor does not resemble the textbook picture at all, but looks far more complicated ⇒.
 - This is due to the insulation requirements, the process requirements, and the need to interconnect as efficiently as possible.
 - The epitaxial layer cuts down on the number of critical diffusions, makes insulation easier, and allows a "buried contact" structure.
- Connecting transistor / elements is complicated; it has to be done on several levels
 - Materials used are AI ("old"), Cu ("new"), W, (highly doped) poly-Si as well as various silicides.
 - Essential properties are the conductivity σ of the conductor, the dielectric constant $\epsilon_{\mathbf{r}}$ of the intermetal dielectric, and the resulting time constant $\tau = \sigma \cdot \epsilon_{\mathbf{r}}$ that defines the maximum signal transmision frequency through the conducting line.
- Integrating MOS transistors requires special measures for insulation (e.g. a field oxide) and for gate oxide production
 - Since a MOS transistor contains intrinsically a capacitor (the gate "stack"), the technology can be used to produce capacitors, too.
- CMOS allows to reduce power consumption dramatically.
 - The process, however, is more complex: Wells with different doping type need to be made.
- Using the third dimension (depth / height) might become necessary for integrating "large" structures into a small projected are (example: trench capacitor in **DRAMs** ⇒).
 - Unwanted "topology", however, makes integration more difficult.
 - Planarized technologies are a must since about 1995! ⇒

It ain't easy!

Property	Number
Feature size	0,2 μm
No. metallization levels	4 - 7
No. components	> 6 · 10 ⁸ (Memory)
Complexity	> 500 Process steps
Cost (development and 1 factory)	ca. \$ 6 · 10 ⁹

Wafer	
Material - Deposit - Modify - Clean - Measure	Structure - Lithography - Etch - Ion Implant
> 20 times	

- Typical wafer size for new factories (2007) : 300 mm diameter, 775 μm thickness, flatness in lower μm region
 - Chip size a few cm², much smaller if possible
 - Yield Y = most important parameter in chip production = % of chips on a wafer that function (= can be sold).
 - Y = 29 % is a good value for starting production
- Chip making = running about 20 times (roughly!!) through "materials" "structuring" loop.
 - About 400 600 individual processing steps (= in / out of special "machine") before chip is finished on wafer
 - More than 30 processing steps for packaging (after separation of chips by cutting)
 - Simple estimate: 99.9% perfection for each processing step means Y < 70 %.
- Dirt in any form as "particles" on the surface of wafer, or as "contamination" inside the wafer is almost always deadly
 - Particles with sized not much smaller than minimum feature sizes (i.e. < 10 nm in 2007) will invariably cover structures and lead to local dysfunction of a transistor or whatever.
 - Point defects like metal atoms in the Si lattice may precipitate and cause local short circuits etc. from the "inside", killing transistors
 - One dysfunctional transistor out of 1.000.000.000 or so is enough to kill a chip!
- Being extremely clean is absolutely mandatory for high Yields Y
 - Use cleanrooms and hyper-clean materials!
 - It won't be cheap!

- Moore's law predicts exponentially growth of "chip complexity" with a high growth rate how far will it reach?
 - Problems and costs are growing exponentially with every new generation.
 - It follows: The market must grow exponentially too, if you want to make a profit.
 - It follows: Large amounts of money can be easily made or lost.
- Falling behind thecompetition in your technology and yields means certain death for companies without a monopoly in some product.

Multiple Choice questions to all of 5

