
Solution to Exercise 3.2-1

Sometimes, a question can be more tricky than originally intended. That is the case here - lets see why.

First lets get the e.s.u out of the way. It means "electrostatic units" which are sub-units of the old c.g.s
(centimeter-gram-second) system, and still much in use.
Few things are more confusing than converting electric or magnetic c.g.s. units into the SI (Standard
International) kilogram- meter- second-Ampère system. If you are not somewhat familiar with that, read up the
basic modules accessible by the links to this topic.

In the case given here, you have to multiply with |c|/10 = 3,3356 · 10–10 (c = vacuum speed of light) to obtain the
charge in [C] (The magnitude signs | | simply mean hat you only take the number!); and since the dipole moment is
charge times distance, the distance in e.s.u units must be cm.

We obtain
µwater = 1,87 · 10–18. 3,3356 ·10–10 C · cm = 6,24 · 10–28 C · cm
Lets see if that is reasonable: A water molecule carries about one elementary charge = 1,6 · 10–19 C at the end
of the dipole, and the distance will be about 1 Å = 10–8 cm. This would give a dipole moment of 1,6 · 10–27 C·cm,
so the number we got should be correct

   

Now to the tricky part. First it is important to realize that:

A material with completely oriented natural dipoles does not have a dielectric constant εr or dielectric
susceptibility χ = εr – 1 anymore!
Consider: χ was the proportionality factor between the external field E and the induced polarization P

P  =  ε · 0χ · E

If the field doubles, the polarization, and thus the degree of orientation into the field doubles.

However, if all dipoles are fully aligned, the polarization is at a maximum and will not respond to the field
anymore; χ looses its meaning.

Nevertheless, we could take this fully polarized material, stick it into a plate capacitor, and just measure how the
capacitance C changes . This would give us a value for εr simply by computing Cafter/Cbefore. Lets see if we can do
this.

For the capacity before we use our fully polarized dielectric we have with some applied voltage U and some
corresponding charge Q0

Cbefore  = 
Q0

U

For the capacity after we use our fully polarized dielectric we have
Cafter = (Q0 + Qpol)/U,
and this gives us

Cafter

Cbefore

 = εr = 
Q0 + Qpol

Q0

This does not help, however, because we do not know Q0. Lets try a different approach and look at Cafter – Cbefore.

We obtain .

Cafter – Cbefore  =  εr · Cbefore – Cbefore  =  Cbefore · (εr – 1)  =  Cbefore · χ  =  
Q0 + Qpol

U
 – 

Q0

U
 = 

Qpol

U

χ  = 
Qpol

U · Cbefore

 =  
Qpol

Q0
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This looks better, but it is still not useful - we do not know Q0. We still have the same problem: The changes are
not proportional to what we had before the introduction of the dielectric, but absolute - we are, in effect, adding a
fixed charge and thus switching a second capacitor in series.

Lets try a different approach. We know that χ(H2O) ≈ 80. The polarization that goes with this value increases steadily
as the field strength inducing the polarization increases - as long as we have P = χ · E

For large field strength, however, this "law" must break down - we reach the absolute limit of polarization sooner
or later.
So lets compute in a first approximation the field strength needed (within the simple law) to induce the maximum
polarization and compare the value obtained to field strengths usually encountered.

First, we compute the maximum polarization Pmax. This is simply the the charge qH2O on one end of the water dipole
times the distance of the charges dH2O divided by the (area) density of the dipoles, i.e. the (area density) of water.

The dipole moment of water is given by

µwater  =  qH2O · dH2O  =  1,87 · 10–18  · 3,3356 · 10–10 C · cm

We need dH2O to compute qH2O; from the picture in the question we find it to be dH2O = 0,0958 nm ·
cos(104,45o/2) = 0,0586 nm.
The (effective) charge qH2O at the end of a dipole thus is

qH2O =  qH2O = 6,24 · 10–28 C·cm / 0,0586 ·10–7 cm = 1,065 · 10–19 C
 

about 2/3 of an elementary charge.

The density of water is ρH2O = 1 kg/l = 1g/cm3 by definition.

One mol of water is 1+ 1+ 16 = 18 g which tells us that we have 1 mol = 6.022 · 1023 water molecules in 18
cm3.
The areal density ρarealof dipoles is therefore

ρareal  = 
6.022 · 1023 · 0.0586 nm

18 cm3
 = 1,96 · 1014 dipoles/cm2

Converting volume densities to areal or surface densities may appear tricky. If you are not sure about how it is
done, consult the link.
The maximum polarization Pmax thus is.

Pmax  = 1,065 10–19 · 1,96 · 1014C /cm2 = 2,087 · 10–5 C /cm2

If we want to generate this polarization with an electrical field and a susceptibility χ = 80, we need a saturation
field strength Esat of

Esat  = Pmax/80 · ε0 = 2,087 · 10–5/80 · 8,854 · 10–12(C/cm2) · (Vm/C) = 2,946 ·106 V/cm

OK, that is a definite result. Now we have to ask ourselves, how we must compare a field strength of about 3 ·106 V/
cm to "normal" field strengths.

To some extent, we do that in sub-chapter 3.5.1, but common sense tells us that we would certainly use 1mm or
more of a dielectric to insulate a wire carrying 1000 V, for example. This translates to a "typical" field strength of
10.000V/cm.
Many materials will be destroyed at field strengths of very roughly 100.000 V/cm, so 3 · 106V/cm is very large,
indeed.
However, dielectrics in integrated circuits must be able to operate at field strength of this order of magnitude.
Take 3 V and a thickness of the dielectric of 10 nm - a not atypical combination - and you have a field strength of
3 · 106V/cm, just what we calculated.

Anyway, if we take 100.000 V/cm as a "normal value, we realize that the only 3,4% of the dipoles need to be
oriented in field direction, whereas the rest could be oriented at random. (1 · 105/2,946 ·106 = 0,034).
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This is not the physical reality, of course. A more physical interpretation is that all dipoles change whatever
orientation they happen to have by about 3,4 % in field direction. What that means precisely, we will leave open,
the general meaning, however, is clear:
The effect of polarization would hardly be noticeable by just looking at the distribution of the dipoles. It is a rather
small effect, even for a material with a comparatively very large dielectric susceptibility.
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