
The Driven, Damped, Harmonic Oscillator

 
In this module we just recall the essentials of the driven and damped harmonic oscillator - for full details see any
textbook of physics, e.g. the Feynman lectures I-21 - I-25.
 

We are looking at a system that can be visualized as shown
.
We have a mass m hanging on a spring in the gravitational
potential of the earth. We assume in addition that the mass
is carrying a fixed charge q.

 

The system is harmonic, if the force law for he spring is
linear, i.e. Hooke's law applies:

 

  

F =  ks · x 
 

  
With F = force acting on the spring, x = elongation caused
by F, and ks = spring constant.

 

In other words: The potential U that m "sees" must be
parabolic since we always have F = – dU/dx.

 

We also assume that the system is damped, e.g. by a
"shock absorber" that is inside the spring like in the
suspension system of your car. This is described by
damping constant kF ("F" signifies "friction") and makes
sure that an oscillation, once started, will not go on forever.

 

Finally, we drive the system, i.e. we apply a periodically changing driving force - in this example by an oscillating
electrical field characterized by its amplitude E0 and its (circle) frequency ω.
We are interested in two things, as shown below:

1. The amplitude x0 of the oscillation as a function of the system parameters, in particular as a function of the
frequency of the driving force.
2. The phase of the oscillation relative to the phase of the driving force.

 

 
We can rephrase these questions by describing the amplitude of the oscillations as a sum of two sinus function, one
exactly in phase with the driving fore, and the other one shifted by 90o (which simply makes it a cosine function
relative to the in-phase sin function)
 

In this case we ask for the in-phase amplitude x0' and the
out-of-phase amplitude x0''. The total amplitude x0 then
follows most easily from the "pointer" diagram as shown on
the right, we have (with φ = phase angle)
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In this case we ask for the in-phase amplitude x0' and the
out-of-phase amplitude x0''. The total amplitude x0 then
follows most easily from the "pointer" diagram as shown on
the right, we have (with φ = phase angle)
  

x  = x'  +  x'' 
1/2

 =  
x''

sin φ
 = 

x'

cosφ 

 

  
By now you realize (it is hoped) that this leads up to the
complex notation generally employed for periodic
phenomena (otherwise read up on complex numbers and
pointer diagrams, or use the (German) link).

 

 
Anyway, first we have to write down the differential equation for the system. It follows (almost) straight from Newtonian
mechanics, we have    

   

m ·
d2x

dt2
 +  kF · m ·

d x

d t
 +  ks · x   = q · E0 · cos(ωt)

 
This is simply the force equilibrium and the only non-trivial force in this equation is the term kF · m · dx/dt

This is the damping or friction term, we simply assume that it is proportional to the mass m and its velocity dx/
dt. The proportionality constant is our damping constant kF times the mass.
Often the friction term is just written as k*F · dx/dt, i.e. the mass is included in k*F, but our approach has a
certain advantage as we will see below.
While all other terms come from ironclad first principle physical law (always assuming harmonic potentials), the
friction term is a bit arbitrary; its exact formulation depends on the specific problem.
However, if you have a system where the amplitude "decays" exponentially after the driving force is switched off,
you must have a damping term as given. Essentially you are back to the very general model of relaxation into the
ground state as employed for the frequency dependence of the orientation polarization.

We are now stuck with solving a linear second order differential equation - and we know how that is done.

Usually, we would move step by step, first looking at a simplified system without damping and driving forces, and
then adding the complications.
What we would find for the simplified system is that there is a special frequency ω0 called the resonance
frequency or "Eigenfrequency", which is the simply the frequency with which the system will oscillate by itself if
started once. The resonance frequency without damping we call ω0'; it is given by

ω0'  = 




kS

m 





1/2

With damping added, the resonance frequency changes somewhat, and the amplitude will decrease with time
after some initial push started an oscillation. This is described by the following equations
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x(t)  = x0 · cos(ω0t) · exp –  
kF

2 

 · t

ω0  = 




kS 

m 

 – 
kF2

4 





1/2  

If, for a moment, we apply these equations to an ion sitting in a lattice, we will notice two interesting points:

1. The "spring constant" follows from the binding potential. It is - of course - related to Youngs modulus Y which tells
us how much the length of a specimen changes under an applied force, or more precisely, how stress applied to a
material creates (elastic) strain. For a homogeneous isotropic material we actually have

kS  = Y  · a0

With a0 = bond length ≈ lattice constant. In other words, we know a lot about the spring constant for the systems
we are treating here.
What that means is that we also have a good idea for the order of magnitude of the resonance frequency. It will
come out to be roughly 1013 Hz.

2. The damping or friction constant kF for a single atom, which is coupled by "bond springs" to some other atoms,
which are coupled by bond springs ... and so on, is far more difficult to assess. Off hand, most of us probably do not
have the faintest idea about a possible numerical value, or if kF relates somehow to some quantities we already know,
like the spring constant.

However, realizing that the dimension of the damping constant is [kF] = 1/s, and that it takes just a few reciprocal
kF's before the oscillation dies out, we can make an educated guess:
If you "snap" just one atom of a huge collection of more or less identical atoms, all connected by more or less
identical springs, pretty soon all atoms will oscillate. And the original energy, initially contained in the amplitude
of the "snapped" atom, is now spread out over all atoms - which means that their amplitudes will be far smaller
than the original one. To get the idea, just look at the picture.

In other words: There is no doubt that it will just take a few - say 5 or maybe 50 - oscillations of the primary atom,
before the orderly energy contained in the oscillation of that one atom will have spread and became diluted and
disordered.
In yet other words: excess energy contained in the oscillations of one atom will turn into thermal energy (=
random vibrations of all the atoms); it becomes thermalized rather quickly - in the time it takes to oscillate back
and forth a few times.
kFω is thus tied to ω0, we expect it to be very roughly in the order of 5ω0 .... 50ω0.

So far so good. But now we must go all the way and switch on "driving", in our example an electrical field that pulls at
the charged mass with a force that oscillates with some arbitrary frequency ω

However, we will not even try to write down the solution the full differential equation given above in "straight" terms
- it is too complicated, and there is a better way. We will, however, consider the solution qualitatively.
We (should) know that the mass oscillates with the frequency of the driving force and an amplitude that depends
on the frequency (and the damping constant and so on), and that there will be a phase shift between the driving
force and the oscillating mass that also depends on the frequency, and so on.
We also (should) know what all of this looks like - qualitatively. Here it is:
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What we are going to do, of course, is to describe the driven damped harmonic oscillator in complex notation. The
basic equation than is

m ·
d2x

dt2
 +  kF · m ·

d x

d t
 +  ks · x   = q · E0 · exp(iωt)

The solutions are most easily obtained for the in-phase amplitude x0' and the out-of-phase amplitude x0''.

The total amplitude x0 and the phase shift φ are contained in these amplitudes. If we want to have them, we
simply calculate them as outlined above.

The solution we will obtain is

x(ω, t)   =  x(ω) · exp (iωt)

x(ω)  =  
q · E0

m







ω02 – ω2

(ω02 – ω2)2 + kF2 ω2


   –  i · 

kF ω

(ω02 – ω2)2 + kF2 ω2







 x'(ω)  =  
q · E0

m





ω02 – ω2

(ω02 – ω2)2 + kF2 ω2





 x''(ω)  =  
q · E0

m





kF ω

(ω02 – ω2)2 + kF2 ω2





This looks complicated, but is, in fact, far more elegant than the description without complex numbers. If we plot
x'(ω) and x''(ω), we obtain the following curves

These curves are purely qualitative. A quantitative rendering can be obtained by the JAVA module below
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Instead of the spring constant, you may enter Youngs modulus directly. Typical numbers (in GPa) are:

Diamond: 1000
Carbides, Oxides, Nitrides: ≈ 300 - 600
Glas: 70
Quartz: 100
Alkali halides: 15 - 70
Wood: 10
Polymers: 1 - 10
Rubber: 0.001 - 0.1

The damping constant enters with its reciprocal value normalized to ω, i.e. roughly the number of cycles it takes
to dampen out an oscillation.
You can compare two sets of parameters, because the last curve will always be shown with the new curve.

You can also enlarge any portion of the diagram by simply drawing a window on the part you like to see enlarged.
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