
3.8 Summary: Dielectrics

The dielectric constant εr "somehow" describes the interaction of
dielectric (i.e. more or less insulating) materials and electrical fields;
e.g. via the equations ⇒

D =ε0 · εr  · E

C = 
ε0 · εr · A

d

n =(εr)½

D is the electrical displacement or electrical flux density,
sort of replacing E in the Maxwell equations whenever materials
are encountered.
C is the capacity of a parallel plate capacitor (plate area A,
distance d) that is "filled" with a dielectric with εr

 

n is the index of refraction; a quantity that "somehow" describes
how electromagnetic fields with extremely high frequency
interact with matter.
in this equaiton it is assumed that the material has no magnetic
properties at the frequency of light.

 

     
Electrical fields inside dielectrics polarize the material, meaning that
the vector sum of electrical dipoles inside the material is no longer
zero.

  

The decisive quantities are the dipole moment µ, a vector, and
the Polarization P, a vector, too.

 
μ  =  q · ξ

P  = 
Σµ

V

Note: The dipole moment vector points from the negative to the
positive charge - contrary to the electrical field vector!

 

The dipoles to be polarized are either already present in the
material (e.g. in H2O or in ionic crystals) or are induced by the
electrical field (e.g. in single atoms or covalently bonded
crystals like Si)

 

The dimension of the polarization P is [C/cm2] and is indeed
identical to the net charge found on unit area ion the surface of a
polarized dielectric.

 

     
The equivalent of "Ohm's law", linking current density to field
strength in conductors is the Polarization law: P =  ε0 · χ · E

εr = 1 + χ 

D = D0 + P  = ε0 · E  +  P

The decisive material parameter is χ ("kee"), the dielectric
susceptibility

 

The "classical" flux density D and the Polarization are linked as
shown. In essence, P only considers what happens in the
material, while D looks at the total effect: material plus the field
that induces the polarization.

 

    
Polarization by necessity moves masses (electrons and / or atoms)
around, this will not happen arbitrarily fast.

εr or χ thus must be functions of the frequency of the applied
electrical field, and we want to consider the whole frequency
range from RF via HF to light and beyond.

 
εr(ω) is called the "dielectric

function" of the material.

The tasks are:

Identify and (quantitatively) describe the major mechanisms
of polarization.
Justify the assumed linear relationship between P and χ.
Derive the dielectric function for a given material.

  

     

(Dielectric) polarization mechanisms in dielectrics are all
mechanisms that

Induce dipoles at all (always with µ in field direction)
⇒ Electronic polarization.

1.

Induce dipoles already present in the material to "point" to
some extent in field direction.

2.

1.

2.
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(Dielectric) polarization mechanisms in dielectrics are all
mechanisms that

Induce dipoles at all (always with µ in field direction)
⇒ Electronic polarization.

1.

Induce dipoles already present in the material to "point" to
some extent in field direction.
⇒ Interface polarization.
⇒ Ionic polarization.
⇒ Orientation polarization.

2.

Quantitative considerations of
polarization mechanisms yield

Justification (and limits) to
the P ∝ E "law"
Values for χ
χ=χ(ω)
χ=χ(structure)

   
Electronic polarization describes the separation of the centers of
"gravity" of the electron charges in orbitals and the positive charge
in the nucleus and the dipoles formed this way. it is always present

It is a very weak effect in (more or less isolated) atoms or ions
with spherical symmetry (and easily calculated).

 

It can be a strong effect in e.g. covalently bonded materials like
Si (and not so easily calculated) or generally, in solids.

 

 
Ionic polarization describes the net effect of changing the distance
between neighboring ions in an ionic crystal like NaCl (or in
crystals with some ionic component like SiO2) by the electric field

Polarization is linked to bonding strength, i.e. Young's modulus
Y. The effect is smaller for "stiff" materials, i.e.
P ∝ 1/Y

     
Orientation polarization results from minimizing the free enthalpy of
an ensemble of (molecular) dipoles that can move and rotate freely,
i.e. polar liquids.

Without field With field

It is possible to calculate the effect, the result invokes the
Langevin function

 

  

L(β) = coth (β)  –  
1

β

 

     
In a good approximation the polarization is given by ⇒  

<P>  = 
N · μ2 ·E

3kT

    
The induced dipole moment µ in all mechanisms is proportional to
the field (for reasonable field strengths) at the location of the atoms
/ molecules considered.

 
μ = α · Eloc
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The proportionality constant is called polarizability α; it is a
microscopic quantity describing what atoms or molecules "do"
in a field.

 

The local field, however, is not identical to the macroscopic or
external field, but can be obtained from this by the Lorentz
approach

 

Eloc = Eex  +  Epol  +  EL  +  Enear

 

For isotropic materials (e.g. cubic crystals) one obtains

EL = 
P

3εo

 

    
Knowing the local field, it is now possible to relate the microscopic
quantity α to the macroscopic quantity ε or εr via the Clausius -
Mosotti equations ⇒

N · α 

3 ε0

     =     
εr – 1

εr + 2
   

 = 
χ

χ + 3

While this is not overly important in the engineering practice, it
is a momentous achievement. With the Clausius - Mosotti
equations and what went into them, it was possible for the first
time to understand most electronic and optical properties of
dielectrics in terms of their constituents (=atoms) and their
structure (bonding, crystal lattices etc.)

 

Quite a bit of the formalism used can be carried over to other
systems with dipoles involved, in particular
magnetism=behavior of magnetic dipoles in magnetic fields.

     

Alternating electrical fields induce alternating forces for dielectric
dipoles. Since in all polarization mechanisms the dipole response
to a field involves the movement of masses, inertia will prevent
arbitrarily fast movements.

Above certain limiting frequencies of the electrical field, the
polarization mechanisms will "die out", i.e. not respond to the
fields anymore.

 

This might happen at rather high (=optical) frequencies,
limiting the index of refraction n=(εr)1/2

 

    
The (only) two physical mechanisms governing the movement of
charged masses experiencing alternating fields are relaxation and
resonance.
Relaxation describes the decay of excited states to the ground
state; it describes, e.g., what happens for orientation polarization
after the field has been switched off.

 

From the "easy to conceive" time behavior we deduce the
frequency behavior by a Fourier transformation

 

The dielectric function describing relaxation has a typical
frequency dependence in its real and imaginary part ⇒

 

 
Resonance describes anything that can be modeled as a mass
on a spring - i.e. electronic polarization and ionic polarization.

 

The decisive quantity is the (undamped) resonance frequency
ω 0=( kS/ m)½ and the "friction" or damping constant kF
The "spring" constant is directly given by the restoring forces
between charges, i.e. Coulombs law, or (same thing) the
bonding. In the case of bonding (ionic polarization) the spring
constant is also easily expressed in terms of Young's
modulus Y. The masses are electron or atom masses for
electronic or ionic polarization, respectively.
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The damping constant describes the time for funneling off
("dispersing") the energy contained in one oscillating mass to
the whole crystal lattice. Since this will only take a few
oscillations, damping is generally large.

 

The dielectric function describing relaxation has a typical
frequency dependence in its real and imaginary part ⇒
The green curve would be about right for crystals.

 

    
The complete frequency dependence of the dielectric behavior of a
material, i.e. its dielectric function, contains all mechanisms
"operating" in that material.

 

As a rule of thumb, the critical frequencies for relaxation
mechanisms are in theGHz region, electronic polarization still
"works" at optical (1015 Hz) frequencies (and thus is mainly
responsible for the index of refraction).
Ionic polarization has resonance frequencies in between.  

Interface polarization may "die out" already a low frequencies.  

A widely used diagram with all mechanisms shows this, but keep
in mind that there is no real material with all 4 major mechanisms
strongly present!
⇒

 

    
A general mathematical theorem asserts that the real and
imaginary part of the dielectric function cannot be completely
independent

 

ε'(ω) = 
– 2 ω

π
  

∞
⌠
⌡
0

 
ω* · ε''(ω*)

ω*2– ω2
· dω*

ε''(ω) = 
2 ω

π
  

∞
⌠
⌡
0

 
ε'(ω*)

ω*2– ω2
· dω*  

If you know the complete frequency dependence of either the
real or the imaginary part, you can calculate the complete
frequency dependence of the other.

 

This is done via the Kramers-Kronig relations; very useful and
important equations in material practice.
⇒

 

     

The frequency dependent current density j flowing
through a dielectric is easily obtained. ⇒

j(ω)  = 
dD

dt
 =  ε(ω) ·

dE

dt
 = ω · ε'' · E(ω)  +  i · ω · ε' · E(ω)

    in phase  out of phase

The in-phase part generates active power and thus
heats up the dielectric, the out-of-phase part just
produces reactive power

 

The power losses caused by a dielectric are thus
directly proportional to the imaginary component of
the dielectric function

 

LA  =  power turned
into heat  = ω · |ε''| · E2

 

   
The relation between active and reactive power is
called "tangens Delta" (tg(δ)); this is clear by looking
at the usual pointer diagram of the current

LA

LR

 := tg δ  = 
IA

IR
 = 
ε''

ε'
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 The pointer diagram for an ideal dielectric
σ(ω=0)=0can always be obtained form an (ideal)
resistor R(ω) in parallel to an (ideal) capacitor
C(ω).

 

R(ω) expresses the apparent conductivity σDK(ω)
of the dielectric, it follows that

 

σDK(ω)  = ω · ε''(ω)
 

     
For a real dielectric with a non-vanishing conductivity at
zero (or small) frequencies, we now just add another
resistor in parallel. This allows to express all
conductivity effects of a real dielectric in the imaginary
part of its (usually measured) dielectric function via

 

ε'' = 
σtotal

ω

We have no all materials covered with respect to
their dielectric behavior - in principle even metals,
but then resorting to a dielectric function would be
overkill.

 

 
A good example for using the dielectric function is
"dirty" water with a not-too-small (ionic) conductivity,
commonly encountered in food.

 

The polarization mechanism is orientation
polarization, we expect large imaginary parts of the
dielectric function in the GHz region.

 

It follows that food can be heated by microwave
(ovens)!

 

    

The first law of materials science obtains: At field strengths larger
than some critical value, dielectrics will experience (destructive)
electrical breakdown

This might happen suddenly (then calls break-down) , with a
bang and smoke, or

 

it may take time - months or years - then called failure.  

Critical field strength may vary from < 100 kV/cm to > 10 MV /
cm.

  

   
Highest field strengths in practical applications do not necessarily
occur at high voltages, but e.g. in integrated circuits for very thin (a
few nm) dielectric layers

 
Example 1: TV set, 20 kV cable,
thickness of insulation=2 mm. ⇒
E=100 kV/cm
Example 2: Gate dielectric in
transistor, 3.3 nm thick, 3.3 V
operating voltage. ⇒ E=10 MV/cm

Properties of thin films may be quite different (better!) than bulk
properties!

 

 
Electrical breakdown is a major source for failure of electronic
products (i.e. one of the reasons why things go "kaputt" (=broke)),
but there is no simple mechanism following some straight-forward
theory. We have:

  

Thermal breakdown; due to small (field dependent) currents
flowing through "weak" parts of the dielectric.

  

Avalanche breakdown due to occasional free electrons being
accelerated in the field; eventually gaining enough energy to
ionize atoms, producing more free electrons in a runaway
avalanche.

  

Local discharge producing micro-plasmas in small cavities,
leading to slow erosion of the material.
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Electrolytic breakdown due to some ionic micro conduction
leading to structural changes by, e.g., metal deposition.

  

     

Polarization P of a dielectric material can also be induced by mechanical
deformation e or by other means.

P = const. · e

Piezo electric materials are anisotropic crystals meeting certain
symmetry conditions like crystalline quartz (SiO2): the effect is linear.

 

The effect also works in reverse: Electrical fields induce mechanical
deformation

 

Piezo electric materials have many uses, most prominent are quartz
oscillators and, recently, fuel injectors for Diesel engines.

 

    
Electrostriction also couples polarization and mechanical deformation, but
in a quadratic way and only in the direction "electrical fields induce (very
small) deformations". e  = 

∆l

l
 =  const · E2

The effect has little uses so far; it can be used to control very small
movements, e.g. for manipulations in the nm region. Since it is
coupled to electronic polarization, many materials show this effect.

 

 
Ferro electric materials posses a permanent dipole moment in any
elementary cell that, moreover, are all aligned (below a critical
temperature).

BaTiO3unit cell

There are strong parallels to ferromagnetic materials (hence the
strange name).

Ferroelectric materials have large or even very large (εr > 1.000)
dielectric constants and thus are to be found inside capacitors with
high capacities (but not-so-good high frequency performance)

     
Pyro electricity couples polarization to temperature changes; electrets are
materials with permanent polarization, .... There are more "curiosities"
along these lines, some of which have been made useful recently, or might
be made useful - as material science and engineering progresses.

  

     

The basic questions one would like to answer with
respect to the optical behaviour of materials and with
respect to the simple situation as illustrated are:

How large is the fraction R that is reflected? 1 –
R then will be going in the material.

1.

How large is the angle β, i.e. how large is the
refraction of the material?

2.

How is the light in the material absorped, i.e. how
large is the absorption coefficient?

3.

Of course, we want to know that as a function of the
wave length λ or the frequency ν=c/λ, the angle α,
and the two basic directions of the polarization (
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All the information listed above is contained in the
complex index of refraction n* as given ⇒

n=(εr)1/2

Basic
definition of
"normal"
index of
refraction n 

n* =  n + i · κ

Terms used
for complex
index of
refaction n*
n=real part
κ=imaginary
part

n*2=(n + iκ)2  = ε' + i · ε''

Straight
forward
definition of
n*

     
Working out the details gives the basic result that

Knowing n=real part allows to answer question 1
and 2 from above via "Fresnel laws" (and
"Snellius' law", a much simpler special version).
Knowing κ=imaginary part allows to answer
question 3 ⇒

 

Ex =   exp
–  

ω · κ · x

c
  ·  exp[ i · (kx · x –  ω · t)]

    

 
Amplitude:
Exponential
decay with κ

"Running" part of
the wave

    
Knowing the dielectric function of a dielectric material
(with the imaginary part expressed as conductivity σDK),
we have (simple) optics completely covered! n2  = 

1

2




ε' + ε' 2  + 

σDK2

4ε02ω2 




½ 



κ2  = 
1

2





– ε' + ε' 2  + 
σDK2

4ε02ω2 




½ 



If we would look at the tensor properties of ε, we
would also have crystal optics (=anisotropic
behaviour; things like birefringence) covered.

 

We must, however, dig deeper for e.g. non-linear
optics ("red in - green (double frequency) out"), or
new disciplines like quantum optics.

 

Questionaire
Multiple Choice questions to all of 3

Electronic Materials - Script - Page 7

http://www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_3/exercise/c3_8_1.html

	3.8 Summary: Dielectrics

