
3.2.2 Electronic Polarization

For calculating the effect of electronic polarization, We consider an idealized atom with perfect spherical symmetry.

 
It has a point like charge + ze in the nucleus, and

The exact opposite charge – ze homogeneously distributed in the volume of the atom,
which is
 

 

V  =  
4

3
πR3

   
 With R = radius of the atom

 

The charge density ρ of the electrons then is

ρ  =  – 
3z · e 

4π · R3

In an electrical field E a force F1 acts on charges given by

F1  =  z · e · E

We will now drop the underlining for vectors and the mauve color for the electrical field strength E for easier
readability.

The positive charge in the nucleus and the center of the negative charges from the electron "cloud" will thus experience
forces in different direction and will become separated. We have the idealized situation shown in the image above.
The separation distance d will have a finite value because the separating force of the external field is exactly balanced
by the attractive force between the centers of charge at the distance d.

How large is his attractive force? It is not obvious because we have to take into account the attraction between a
point charge and homogeneously distributed charge.
The problem is exactly analogous to the classical mechanical problem of a body with mass m falling through a
hypothetical hole going all the way from one side of the globe to the other.
We know the solution to that problem: The attractive force between the point mass and the earth is equal to the
attractive force between two point masses if one takes only the mass of the volume inside the sphere given by the
distance between the center of the spread-out mass and the position of the point mass.
Knowing electrostatics, it is even easier to see why this is so. We may divide the force on a charged particles on
any place inside a homogeneously charged sphere into the force from the "inside" sphere and the force from the
hollow "outside" sphere. Electrostatics teaches us, that a sphere charged on the outside has no field in the inside ,
and therefore no force (the principle behind a Faraday cage). Thus we indeed only have to consider the "charge
inside the sphere.

For our problem, the attractive force F2 thus is given by

F2  =  
q(Nucleus) · q(e in d)

4π ε 0 · d 2

with q(Nucleus) = ze and q(e in d) = the fraction of the charge of the electrons contained in the sphere with radius
d, which is just the relation of the volume of the sphere with radius d to the total volume . We have
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q(e in d)  =   ze ·
(4/3) π · d 3

(4/3) π · R 3
  =  

ze · d 3

R 3

and obtain for F2:

F2  =  




(ze) 2

4 πε0 · R 3





· d

We have a linear force law akin to a spring; the expression in brackets is the "spring constant". Equating F1 with F2
gives the equilibrium distance dE.

dE  =  
4 πε0 · R 3 · E

ze

Now we can calculate the induced dipole moment μ, it is

μ  =  ze · dE  =  4 πε0 · R 3 · E

The polarization P finally is given by multiplying with N, the density of the dipoles; we obtain

P  =  4 π · N · ε0 · R 3 · E

Using the definition P = ε0 · χ · E we obtain the dielectric susceptibility resulting from atomic polarization, χatom

χatom  =  4 π · N · R 3

Let's get an idea about the numbers involved by doing a simple exercise:

Exercise 3.2-3
Some numbers for atomic polarization

This is our first basic result concerning the polarization of a material and its resulting susceptibility. There are a number
of interesting points:

We justified the "law" of a linear relationship between E and P for the electronic polarization mechanism (sometimes
also called atomic polarization).
We can easily extend the result to a mixture of different atoms: All we have to do is to sum over the relative
densities of each kind of atom.
We can easily get an order of magnitude for χ. Taking a typical density of N ≈ 3 · 1019 cm– 3 and R ≈ 6 · 10– 9 cm,
we obtain

χ ≈ 8,14 · 10– 5,     or

εr = 1, 000 0814

In words: the electronic polarization of spherical atoms, while existent, is extremely weak. The difference to vacuum is at
best in the promille range.
Concluding now that electronic polarization is totally unimportant, would be premature, however. Atoms in crystals or in
any solids do not generally have spherical symmetry. Consider the sp3 orbital of Si, Ge or diamond.

Without a field, the center of the negative charge of the electron orbitals will still coincide with the core, but an
external field breaks that symmetry, producing a dipole momentum.
The effect can be large compared to spherical s-orbitals: Si has a dielectric constant (DK) of 12, which comes
exclusively from electronic polarization! Some values for semiconductors are given in the link.
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Questionaire
Multiple Choice questions to 3.2.2
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