Solution to Exercise 1.3-2

Derive numbers for v_0 , v_D , τ , and l

First Task: Derive a number for vo (at room temperature). We have

							`			()	
		(3 <u>k</u> T `	1/2	(′ 8,6 · 10 ^{−5} · 300	eV ⋅ K	1/2			(eV)	1/2
v ₀	=		<u>m</u>) = (= 1,68 · 10 ¹⁴ ·	1,68 · 10 ¹⁴ ·			
				9,1 · 10 ^{−31}	K ∙ kg	J		kg /)		

The dimension "square root of eV/kg" does not look so good - for a velocity we would like to have m/s. In looking at the energies we equated kinetic energy with the classical dimension [kg · m²/s²] = [J] with thermal energy kT expressed in [eV]. So let's convert eV to J (use the link) and see if that solves the problem. We have 1 eV = 1,6 · 10⁻¹⁹ J = 1,6 · 10⁻¹⁹ kg · m² · s⁻² which gives us

$$v_0 = 1,68 \cdot 10^{14} \cdot \left(\frac{1,6 \cdot 10^{-19} \text{ kg} \cdot \text{m}^2}{\text{kg} \cdot \text{s}^2} \right)^{1/2} = 5,31 \cdot 10^4 \text{ m/s} = 1,91 \cdot 10^5 \text{ km/hr}$$

Possibly a bit surprising - those electrons are no sluggards but move around rather fast. Anyway, we have shown that a value of $\approx 10^4$ m/s as postulated in the backbone is really OK.

Of course, for T → 0, we would have v₀→ 0 - which should worry us a bit ???? If instead of room temperature (T = 300 K) we would go to let's say 1200 K, we would just double the average speed of the electrons.

Second Task: Derive a number for au. We have

$$\tau = \frac{\sigma \cdot m}{n \cdot e^2}$$

First we need some number for the concentration of free electrons per m³. For that we complete the <u>table given</u>, noting that for the number of atoms per m³ we have to divide the density by the atomic weight.

Atom	Density [kg ⋅ m ^{−3}]	Atomic weight × 1,66 · 10 ⁻²⁷ kg	Conductivity σ × 10 ⁵ [$\Omega^{-1} \cdot m^{-1}$]	No. Atoms [m ⁻³] × 10 ²⁸
Na	970	23	2,4	2,54
Cu	8.920	64	5,9	8,40
Au	19.300	197	4,5	5,90

So let's take 5 · 10²⁸ m⁻³ as a good order of magnitude guess for the number of atoms in a m³, and for a first estimate some average value σ = 5 · 10⁵ [Ω⁻¹ · m⁻¹]. We obtain

τ=	5 · 10 ⁵ · 9,1 · 10 ⁻³¹	kg ⋅ m ³	2 55 40-16	kg ∙ m²
	5 · 10 ²⁸ · (1,6 · 10 ^{−19}) ²	$\Omega \cdot \mathbf{m} \cdot \mathbf{A^2} \cdot \mathbf{s^2}$	= 3,55 • 10	$V \cdot A \cdot s^2$

Well, somehow the whole thing would look much better with the unit [s]. So let's see if we can remedy the situation.

Easy: Volts times Amperes equals *Watts* which is power, e.g. energy per time, with the unit $[J \cdot s^{-1}] = kg \cdot m^2 \cdot s^{-3}$. Insertion yields

$$\tau = 1,42 \cdot 10^{-28} \frac{\text{kg} \cdot \text{m}^2 \cdot \text{s}^3}{\text{kg} \cdot \text{m}^2 \cdot \text{s}^2} = 3,55 \cdot 10^{-16} \text{ s} = 0.35 \text{ fs}$$

The backbone thus is right again. The scattering time is in the order of <u>femtosecond</u> which is a short time indeed. Since all variables enter the equation linearly, looking at somewhat other carra ier densities (e.g. more than **1** electron per atom) or conductivities does not really change the general picture very much.

Third Task: Derive a number for v_D . We have (for a field strength E = 100 V/m = 1 V/cm)

This is somewhat larger than the value given in the backbone text.

- However a field strength of 1 V/cm applied to a metal is huge! Think about the current density j you would get if you apply 1 V to a piece of metal 1 cm thick.
- C It is actually $j = \sigma \cdot E = 5 \cdot 10^7 [\Omega^{-1} \cdot m^{-1}] \cdot 100$ V/m = 5 · 10⁹ A/m² = 5 · 10⁵ A/cm²!
- For a more "reasonable" current density of 10³ A/cm² we have to reduce E hundredfold and then end up with |vp| = 0,0624 mm/s and that is slow indeed!

Fourth Task: Derive a number for I. We have

 $I_{\text{min}} = 2 \cdot v_0 \cdot \tau = 2 \cdot 5,31 \cdot 10^4 \cdot 3,55 \cdot 10^{-16} \text{ m} = 3,77 \cdot 10^7 \text{ m} = 0,0377 \text{ nm}$

Right again! If we add the comparatively miniscule v_D , nothing would change. Decreasing the temperature would lower *I* to eventually zero, or more precisely, to $2 \cdot v_D \cdot \tau$ and thus to a value far smaller than an atom.