Displacement and Strain

- While the relation between the displacement field $\underline{u}(\underline{r})$ and the local strain tensor ϵ_{ij} is rather elementary, it does not hurt to recall the decisive points.
 - Let's take the <u>simple example from the backbone</u> and consider a rod that is uniformly elongated; i.e. $\underline{u(r)} = u_x(x) = a \cdot x$; **a** is some constant.
 - In other words, the vector <u>u</u> only has a component in **x**-direction, which only depends on **x** as variable. The geometry than looks like this:

- At any point in the rod a little cube will be deformed into a *cuboid* the side in *x*-direction is somewhat longer than the others.
- What kind of strain do we have to put on a cube positioned a x, to produce the cuboid?
 - Well, since there is only strain in x-direction, we simply write down the elementary formula for strain

$$\epsilon_{XX} = \epsilon_{X} = \frac{I - I_{0}}{I_{0}} = \frac{u_{X}(x + dx) - u_{X}(x)}{dx} = \frac{du_{X}}{dx}$$

- / If we deform in all three directions, we get corresponding expressions for ϵ_{yy} and ϵ_{zz} .
- Since we also might have displacement components in x-direction that depend on y or z, e.g. $u_x(x, y, z) = a \cdot y$, we may, in general, also form mixed (partial) derivatives; e.g. $\partial u_x(x, y, z) / \partial y$. What do those derivatives signify?
 - Shear stresses, of course. A little less easy to see, perhaps, but there can be no doubt about it.
 - You may want to try to show that for yourself with the simple displacement field given above and the <u>equations in</u> the backbone as a guideline for what you are looking for.