llustration

Solution to Exercise 4.2-1 "Diffusion During Cooling"

’ For the diffusion length L we have the well known equations:

E is the activation energy of the diffusing species an k is the Boltzmann constant. Because of T = Tg - exp —(A -
t) we obtain for L2
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Now we have a purely mathematical exercise which is not too difficult, but not too easy either. In order to solve the
integral, we try the substitution

i)
Au

w(t) = kE exp( At). dt =
0

The boundaries must be changed too, we obtain

t = 0 changes to ug = E/kTg
t = o changes to u = .
This gives us
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’ Now you must solve a simple looking integral. There are several ways of doing that

1. Find a good math book with lots of integrals and take the solution from there (the "Bronstein”, however,

won't do)
2. Do a sensible approximation and solve it yourself in a simple way

3. Go all the way and solve it completely - if you can.
Here we go the second route.
We use a Taylor expansion for 1/u around ug because that's where u is felt most critically - for large values of u
everything tends to be zero anyway. In full generality we have
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If we keep it really simple, we could just use the first term, having 1/u = 1/ug; but we will go one step beyond this

and take
1 1 u — up
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This gives us
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The second term of the Taylor expansion brought in the factor [1 — kTo/E] and since kTg « E in all normal cases,
it is indeed not very important. If we neglect it, we may simply give the desired solution as
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’ Now we can look at some typical cases and see what this formula means. However, first we have to find the right

values for A
For this we have to take the given values of the initial cooling rate, which we call A', and see what A values

correspond to these cooling rates.
The initial cooling rate A" is the derivative of the T(t) function att = tg = 0, we thus have

d
— (To-exp—A-t = N = —ANTo-exp-A-t
t=0

dt

and obtain

To

The "-" sign cancels, because our A' must carry a minus sign, too, if it is to be a cooling and not a heating rate

’ Replacing A by A'/Tg yields the final formula:
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We have to evaluate this formula for cooling rates A' given as (-) 1 °K/s, 10 °K/s, 50 °K/s, 104 °K/s, and
activation energies of E = 1.0 eV, 2.0 eV, 5 eV. For Dg we take Dg = 105 cm2s—1.

The result (including the [1 — kTo/E] term is shown below
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’ What can we learn from the formula and the curves?

1.

2.

The cooling rate is not all that important. Differences in the cooling rate of a factor of 50 produce only an
order of magnitude effect or less since L is only proportional to (1/A)/2.

The starting temperature Tg is slightly more important than the activation energy E; both have the same
weight in the exponential, but Tg appears directly in the pre-exponential while E enters only as square

root.
The pre-exponential factor Dg of the diffusion coefficient is exactly as important as A' and E in the pre-

exponential factor of the equation for L

What can we do with the numbers? Quite simple:

1.

L gives you the average of the largest distance between some point defect agglomerates, e.g. precipitates,
because point defects farther away than L from some nuclei cannot reach it and must form their own

agglomerate.

The average number of point defects in an agglomerate divided by L3 gives a lower limit for the point defect
concentration, because at least as many point defects as we find in an agglomerate must have been in the
volume L3,
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