2. Properties of Point Defects

2.1 Intrinsic Point Defects and Equilibrium
2.1.1 Simple Vacancies and Interstitials

Basic Equilibrium Considerations

’ We start with the most simple point defects imaginable and consider an uncharged vacancy in a simple crystal with a
base consisting of only one atomic species - that means mostly metals and semiconductors.

Some call this kind of defect "Schottky Defect, although the original Schottky defects were introduced for ionic
crystals containing at least two different atoms in the base.

We call vacancies and their "opposites", the self-intersitals, intrinsic point defects for starters. Intrinsic simple
means that these point defects can be generated in the ideal world of the ideal crystal. No external or extrinsic help
or stuff is needed.

’ To form one vacancy at constant pressure (the usual situation), we have to add some free enthalpy Gf to the crystal, or,
to use the name commonly employed by the chemical community, Gibbs energy.

Gr, the free enthalpy of vacancy formation, is defined as

GF = HF - T-Sf

The index F always means "formation"; Hr thus is the formation enthalpy of one vacancy, Sk the formation
entropy of one vacancy, and T is always the absolute temperature.

’ The formation enthalpy Hr in solids is practically indistinguishable from the formation energy Er (sometimes written Uf)
which has to be used if the volume and not the pressure is kept constant.

The formation entropy, which in elementary considerations of point defects usually is omitted, must not be confused
with the entropy of mixing or configurational entropy; the entropy originating from the many possibilities of arranging
many vacancies, but is a property of a single vacancy resulting from the disorder introduced into the crystal by
changing the vibrational properties of the neighboring atoms (see ahead).

’ The next step consists of minimizing the free enthalpy G of the complete crystal with respect to the number ny of the
vacancies, or the concentration cy = ny /N, if the number of vacancies is referred to the number of atoms N comprising
the crystal. We will drop the index "V" from now now on because this consideration is valid for all kinds of point defects,
not just vacancies.

The number or concentration of vacancies in thermal equilibrium (which is not necessarily identical to chemical
equilibrium!) then follows from finding the minimum of G with respect to n (or ¢), i.e.

0G 0
— = — G0+G1+G2)=O
on  on

with Gg = Gibbs energy of the perfect crystal, G1 = Work (or energy) needed to generate n vacancies =n - Gg, and
G2 =—T - Sconf With Sconf = configurational entropy of n vacancies, or, to use another expression for the
same quantity, the entropy of mixing n vacancies.

’ We note that the partial derivative of G with respect to n, which should be written as [0G/0 Nleverything else = const. IS,
by definition, the chemical potential p of the defects under consideration. This will become important if we consider
chemical equilibrium of defects in, e.g., ionic crystals.

’ The partial derivatives are easily done, we obtain

0Go
— =0
on
0G1
— =G
on

which finally leads to
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aG aSConf
GE-T - =0
on on

chemical potential py in equilibrium

’ We now need to calculate the entropy of mixing or configurational entropy Sconf by using Boltzmann's famous formula

S =kg-InP

With kg = k = Boltzmanns constant and P = number of different configurations (= microstates) for the same
macrostate.

The exact meaning of P is sometimes a bit confusing; activate the link to see why.

’ A macrostate for our case is any possible combination of the number n of vacancies and the number N of atoms of the
crystal. We obtain P(n) thus by looking at the number of possibilities to arrange n vacancies on N sites.

This is a standard situation in combinatorics; the number we need is given by the binomial coefficient; we have

() ——

(N - n)l-n!

If you have problems with that, look at exercise 2.1-1 below.
’ The calculation of 0S/0n now is straight forward in principle, but analytically only possible with two approximations:

1. Mathematical Approximation: Use the Stirling formula in its simplest version for the factorials, i.e.

Inx! =~ x-Inx

2. Physical Approximation: There are always far fewer vacancies than atoms; this means

N-n =N
’ As a first result we obtain "approximately"
0S N
T- — = kT:-In—
on n

’ If you have any doubts about this point, you should do the following exercise.

Exercise 2.1-1

Derive the Formula for cy
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’ With n/N = cy = concentration of vacancies as defined before, we obtain the familiar formula

Gr
Cv = exp =
kT
or, using GF = HF — T Sg
Sk Hr
Cy =exp— -exp-——
k KT

’ For self-interstitials, exactly the same formula applies if we take the formation energy to be now the formation energy
of a self-interstitial.

However, the formation enthalpy of self-interstitials is usually (but not necessarily) considerably larger than that of a
vacancy. This means that their equilibrium concentration is usually substantially smaller than that of vacancies and

is mostly simply neglected.
Some numbers are given in this link; far more details are found here. The one number to remember is:

He(vacancy)

L = 1 eV
in simple metals

It goes without saying (I hope) that the way you look at equations like this is via an Arrhenius plot. In the link you can
play with that and refresh your memory
Instead of plotting c\y(T) vs. T directly as in the left part of the illustration below, you plot the logarithm Ig[cv(T)] vs.
1/T as shown on the right.

In the resulting "Arrhenius plot" or "Arrhenius diagram" you will get a straight line. The (negative) slope of this
straight line is then "activation"” energy of the process you are looking at (in our case the formation energy of the
vacancy), the y-axis intercept gives directly the pre-exponential factor.

Sy . lg Cy

’ Compared to simple formulas in elementary courses, the factor exp(Sg/k) might be new. It will be justified below.

’ Obtaining this formula by shuffling all the factorials and so on is is not quite as easy as it looks - lets do a little fun
exercise

Exercise 2.1-2

Find the mistake!

’ Like always, one can second-guess the assumptions and approximations: Are they really justified? When do they break
down?

The reference enthalpy Gg of the perfect crystal may not be constant, but dependent on the chemical environment of
the crystal since it is in fact a sum over chemical potentials including all constituents that may undergo reactions
(including defects) of the system under consideration. The concentration of oxygen vacancies in oxide crystals may,
e.g., depend on the partial pressure of Oz in the atmosphere the crystal experiences. This is one of the working
principles of lonics as used for sensors. Chapter 2.4 has more to say to that.
The simple equilibrium consideration does not concern itself with the kinetics of the generation and annihilation of
vacancies and thus makes no statement about the time required to reach equilibrium. We also must keep in mind
that the addition of the surplus atoms to external or internal surfaces, dislocations, or other defects while generating
vacancies, may introduce additional energy terms.
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There may be more than one possibility for a vacancy to occupy a lattice site (for interstitials this is more obvious).
This can be seen as a degeneracy of the energy state, or as additional degrees of freedom for the combinatorics
needed to calculate the entropy. In general, an additional entropy term has to be introduced. Most generally we
obtain

Zd Gr
C=— -exp——
Zo kT

with Zq or Zg = partition functions of the system with and without defects, respectively. The link (in German) gets
you to a short review of statistical thermodynamics including the partition function.

’ Lets look at two examples where this may be important:

The energy state of a vacancy might be "degenerate", because it is charged and has trapped an electron that has a
spin which could be either up or down - we have two, energetically identical "versions" of the vacancy and Zq/Zg = 2
in this case.

A double vacancy in a bcc crystals has more than one way of sitting at one lattice position. There is a preferred
orientation along <111>, and Zq4/Zg = 4 in this case.

Calculation and Physical Meaning of the Formation Entropy

’ The formation entropy is associated with a single defect, it must not be mixed up with the entropy of mixing resulting
from many defects.

It can be seen as the additional entropy or disorder added to the crystal with every additional vacancy. There is
disorder associated with every single vacancy because the vibration modes of the atoms are disturbed by defects.

Atoms with a vacancy as a neighbour tend to vibrate with lower frequencies because some bonds, acting as
"springs", are missing. These atoms are therefore less well localized than the others and thus more "unorderly” than
regular atoms.

’ Entropy residing in lattice vibrations is nothing new, but quite important outside of defect considerations, too:

Several bcc element crystals are stable only because of the entropy inherent in their lattice vibrations. The — TS
term in the free enthalpy then tends to overcompensate the higher enthalpy associated with non close-packed
lattice structures. At high temperatures we therefore find a tendency for a phase change converting fcc lattices to
bcc lattices which have "softer springs”, lower vibration frequencies and higher entropies. For details compare
Chapter 6 of Haasens book.

’ The calculation of the formation entropy, however, is a bit complicated. But the result of this calculation is quite simple.

Here we give only the essential steps and approximations.

First we describe the crystal as a sum of harmonic oscillators - i.e. we use the well-known harmonic
approximation. From quantum mechanics we know the energy E of an harmonic oscillator; for an oscillator number i
and the necessary quantum number n we have

h wj
Ein = — - (n +1/2)
2T

’ We are going to derive the entropy from the all-encompassing partition function of the system and thus have to find
the correct expression.

The partition function Z;j of one harmonic oscillator as defined in statistical mechanics is given by

h wj - (n +%)
Zi = X exp —
n 2 - kT

The partition function of the crystal then is given by the product of all individual partition function of the p = 3N
oscillators forming a crystal with N atoms, each of which has three degrees of freedom for oscillations. We have
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’ From statistical thermodynamics we know that the free energy F (or, for solids, in a very good approximation also the
free enthalpy G) of our oscillator ensemble which we take for the crystal is given by

hwj hwj
F=-KkT-InZ = KT- X +In(1—exp——)
i \4mkT 21kT

’ Likewise, the entropy of the ensemble (for const. volume) is

oF

oT

’ Differentiating with respect to T yields for the entropy of our - so far - ideal crystal without defects:

hwi
hw 2 - kT
S=k-2 —In(l—exp +
I 2m - kT hwi
exp -1
21 - kT

’ Now we consider a crystal with just one vacancy. All eigenfrequencies of all oscillators change from wj to a new as yet
undefined value w'i. The entropy of vibration now is S'.

The formation entropy Sg of our single vacancy now can be defined, it is

S, =S -S

i.e. the difference in entropy between the perfect crystal and a crystal with one vacancy.
’ It is now time to get more precise about the wj, the frequencies of vibrations. Fortunately, we know some good
approximaitons:

At temperatures higher then the Debye temperature, which is the interesting temperature region if one wants to
consider vacancies in reasonable concentrations, we have

hwj
— << kT
21
hw'j
— << kT
21

which means that we can expand hwj/2TT into a series of which we (as usual) consider only the first term.

’ Running through the arithmetic, we obtain as final result, summing over all eigenfrequencies of the crystal

Defects - Script - Page 5



j
Sg =k-3 In —

’ This now calls for a little exercise:

Exercise 2.1-3

Do the Math for the formula for the
formation entropy

’ For analytical calculations we only consider next neighbors of a vacancy as contributors to the sum; i.e. we assume w
= w' everywhere else. In a linear approximation, we consider bonds as linear springs; missing bonds change the
frequency in an easily calculated way. As a result we obtain (for all cases where our approximations are sound):

Sr (single vacancy) = 0.5 k (Cu) to 1.3 k (Au).
Sk (double vacancy) = 1.8 k (Cu) to 2.2 k (Au).

’ These values, obtained by assuming that only nearest neighbors of a vacancy contribute to the formation entropy, are

quite close to the measured ones. (How formation entropies are measured, will be covered in chapter 4). Reversing the
argumentation, we come to a major conclusion:

’ The formation entropy measures the spatial extension of a vacancy, or, more generally, of a zero-dimensional defect.
The larger Sk, the more extended the defect will be because than more atoms must have changed their vibrations
frequencies.

As a rule of thumb (that we justify with a little exercise below) we have:

Sk = 1k corresponds to a truly atomic defect, Sg = 10k correponds to extended defects disturbing a volume of about
5 - 10 atoms.

This is more easily visualized for interstitials than for vacancies. An "atomic" interstitials can be "constructed" by
taking out one atom and filling in two atoms without changing all the other atoms appreciably. An interstitial
extended over the volume of e.g. 10 atoms is formed by taking out 10 atoms and filling in 11 atoms without giving
preference in any way to one of the 11 atoms - you cannot identify a given atom with the interstitial.

’ Vacancies or interstitials in elemental crystal mostly have formation entropies around 1k, i.e. they are "point like". There
is a big exception, however: Si does not fit this picture.

While the precise values of formation enthalpies and entropies of vacancies and interstitials in Si are still not known
with any precision, the formation entropies are definitely large and probably temperature dependent; values around
6k - 15k at high temperatures are considered. Historically, this led Seeger and Chik in 1968 to propose that in Si
the self-interstitial is the dominating point defect and not the vacancy as in all other (known) elemental crystals. This
proposal kicked of a major scientific storm; the dust has not yet settled.

Exercise 2.1-4

Calculate formation entropies

Multi Vacancies (and Multi - Interstitials by Analogy)

’ So far, we assumed that there is no interaction between point defects, or that their density is so low that they "never"
meet. But interactions are the rule, for vacancies they are usually attractive. This is relatively easy to see from basic
considerations.

’ Let's first look at metals:

A vacancy introduces a disturbance in the otherwise perfectly periodic potential which will be screened by the free
electrons, i.e. by a rearrangement of the electron density around a vacancy. The formation enthalpy of a vacancy is
mostly the energy needed for this rearrangement; the elastic energy contained in the somewhat changed atom
positions is comparatively small.

If you now introduce a second vacancy next to to the first one, part of the screening is already in place; the free
enthalpy needed to remove the second atom is smaller.

In other word: There is a certain binding enthalpy (but from now on we will call it energy, like everybody else)
between vacancies in metals (order of magnitude: (0,1 - 0,2) eV).
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’ Covalently bonded crystals

The formation energy of a vacancy is mostly determined by the energy needed to "break" the bonds. Taking away a
second atom means that fewer bonds need to be broken - again there is a positive binding energy.

¥ lonic crystals

Vacancies are charged, this leads to Coulomb attraction between vacancies in the cation or anion sublattice, resp.,
and to repulsion between vacancies of the same nature. We may have positive and negative binding energies, and in
contrast to the other cases the interaction can be long-range.
’ The decisive new parameter is the binding energy E2yv between two vacancies. It can be defined as above, but we also
can write down a kind of "chemical" reaction equation involving the binding energy E2v (the sign is positive for
attraction):

1IV+1V & V2 + Eoy

V in this case is more than an abbreviation, it is the "chemical symbol" for a vacancy.

If you have some doubts about writing down chemical reaction equation for "things" that are not atoms, you are
quite right - this needs some special considerations. But rest assured, the above equation is correct, and you can
work with it exactly as with any reaction equation, i.e. apply reaction kinetics, the mass action law, etc.

’ Now we can do a calculation of the equilibrium concentration of Divacancies. We will do this in two ways.

’ First Approach: Minimize the total free enthalpy (as before):

First we define a few convenient quantities

Grev) = Hrv) — TSF@v)
Hrv) = 2HFav) — Eov
SF@v) = 25Fav) + A Sov

With A Soyv = entropy of association (it is in the order of 1k - 2k in metals), and E2y = binding energy between
two vacancies.
We obtain in complete analogy to single vacancies

z Sav HFv)
Coy = —-exp — exp —
2 k kKT
z ASav Eov
Cov = C1v? - — - exp exp —
2 k kT

The factor z/2 (z = coordination number = number of (symmetrically identical) next neighbors) takes into account
the different ways of aligning a divacancy on one point in the lattice as already noticed above. We have z = 12 for

fcc, 8 for bcc and 4 for diamond lattices.

’ The formula tells us that the concentration of divacancies in thermal equilibrium is always much smaller than the
concentration of single vacancies since cy << 1. "Thermal equilibrium" has been emphasized, because in non-

equilibrium things are totally different!

Some typical values for metals close to their melting point are

Civ

cav

= 104 - 103

= 106 - 10°°

’ In the second approach, we use the mass action law.

With the reversible reaction 1V + 1V & Voy + E2y and by using the mass action law we obtain
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(c1v)?

cav

= K(T) = const-exp——

AE

KT

With AE = energy of the forward reaction (you have to be extremely careful with sign conventions whenever invoking

mass action laws!). This leads to

cov = (c1v)? -const™l .exp —

AE

KT

’ In other words: Besides the "const.”1" we get the same result, but in an "easier" way.

The only (small) problem is: You have to know something additional for the determination of reaction constants if
you just use the mass action law. And that it is not necessarily easy - it involves the concept of the chemical
potential and does not easily account for factors coming from additional freedoms of orientation. e.g. the factor z/2

in the equation above.

’ The important point in this context is that the reaction equation formalism also holds for non-equilibrium, e.g. during
the cooling of a crystal when there are too many vacancies compared to equilibrium conditions. In this case we must
consider local instead of global equilibrium, see chapter 2.2.3.

’ There would be much more to discuss for single vacancies in simple mono-atomic crystals, e.g. how one could calulate
the formation enthalpy, but we will now progress to the more complicated case of point defects in crystals with two

different kinds of atoms in the base.

That is not only in keeping with the historical context (where this case came first), but will provide much food for

thought.

Questionaire

Multiple Choice questions to 2.1.1

Exercise 2.1-7
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