
Mass Action Law

General Remarks

This module is registered in the "advanced" part, because it uses the concept of the chemical potential also
developed in the advanced part.

We use a rather general derivation, but do not go too deep into the details.

The mass action law is usually taught in high school chemistry, so we know what we want to find: We look at some
chemical reaction, e.g.

2H2 + O2  ⇔  2H2O

The mass action law, as we know it, than asserts that the concentrations of the particles (= molecules in this case)
in equilibrium can be written as

[H2]2 · [O2]

[H2O]2
 = K(T, p)

With K = reaction constant.

Or in words: The product of the concentration of the reaction partners with all concentrations always taken to the
power of their stoichiometric factors, equals a constant K which has a numerical value that depends on the
temperature and pressure. The constant K is called reaction constant.

This statement, however, includes already a generalization and a convention:

There can be any number of particles reacting or resulting from the reaction, and we always bring the results of
the reaction, (in the example the H2O), to the right side of the equation and assign a negative value to its
stoichiometric factors - the reaction products thus end up in the denominator of the concentration products. We
mostly use integers for the stoichiometric factors, but that is not de rigeur.
An alternative way of writing the reaction equations that shows the "minus" sign more clearly, is

2H2 + O2  –  2H2O  =  0

The mass action law is deceptively simple, it is however not so trivial to derive it from thermodynamics including a
value for the reaction constant, and it is often quite tricky to use for real cases!

We will now give a standard derivation; an alternative way is given in another module.

 

Standard Derivation Using the Chemical Potential

First we define arbitrary reactions of any kind by the equation

ν1 · A1 +  ν 2 · A2  +  ....  +  ν f · Af  = νg · Ag  +  νg+1 · Ag+1  +  .... +  νi · Ai

The Ax denote the particles (or reactions partners involved) - atoms, ions, molecules, vacancies, electrons, holes,
.. - we want to be very general at this point. The corresponding stoichiometric factors are the νx, and they are
usually (but not always) integers. Bringing the products of the reaction to the left side of the equation which gives
their stoichiometric factors a negative sign, leads to the simple version

i

Σ
1

 νi · Ai  = 0

Chemical reactions as written down in standard notation always inherently assume that we have exactly the right
amount of the chemicals (or, as we prefer to call it, particles) that are needed.

The reaction above, for our example, thus takes two mols of H2 (= A1) for every mol of O2 (= A2 ); or in our lingo,
two H2 particles (= molecules in this case) for one O2 particle., yielding two H2O (= A 3) particles.
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We have ν1 = 2, ν2 = 1, ν3 = – 2.

Real life is different. You mix some number of H2 particles with some number of O2 particles, and after the reaction
you have some number of all three particles involved (with one number probably being very low, or ideally zero, if the
most scarce particle was completely used up in the reaction).

In deriving the mass action law, we have to allow for this by allowing arbitrary starting concentrations ci0 of the
particles involved including, if we wish, some concentration of the reaction products even before a reaction took
place - nobody keeps us from filling some water into the container with H2 and O2 before we start the reaction.

We want to get a statement about the concentration of the particles in equilibrium for an arbitrary mix of
concentrations at the start of the reaction in non-equilibrium; for ease of writing we denote the equilibrium
concentration of the component i with ci; the concentration at the start than is ci 0, and an arbitrary concentration is
Ci.

The various ci may be the number of mols, the absolute number of particles, or the concentration relative to some
fixed value - it doesn't matter as long as the same definition is used throughout.
As pointed out above, it is important to realize, that the ci0 can have any initial values whatsoever - you always
can throw into a closed container whatever you want - but the dCi; the changes in the concentrations, are tied to
each other via the reaction equation.
If you produce one mol of H2O from any initial quantity of H2 and O2; you will have reduced the H2 concentration
by 1 mol and the O2 concentration by 0,5 mol - the dCi thus are not independent.

The whole mixture of stuff - at whatever composition, i.e. for the whole range of the Ci - will have some free enthalpy
G(Ci, p, T).

The important question is: For which concentration values of the various particles, do we have equilibrium and
thus the minimum of G?
In other words: For what conditions is dG = 0?

Lets write it down. With G = G(Ci, p, T) we have for dG

dG  = 
∂ G

∂C1

· dC1  + 
∂ G

∂C2

· dC1  +  ...  +  
∂G

∂C i 
· dCi  + 

∂G

∂T
· dT  + 

∂G

∂p
· dp

The (∂G/∂C i) by definition are the chemical potentials μi of the particle sort x in the mixture, and the two last
terms are simply = 0 if we look at it at constant pressure and temperature. For equilibrium.this leaves us with

dG  = 
i

Σ
1

 μi · dCi   =  0

Now comes a decisive step. We know that our dCi are tied somehow, but how?

To see this, we "wiggle" the system a little and react some particles, changing the concentrations a little bit. As
a measure of this change we introduce a "reaction coordinate" dξ; a somewhat artificial, but useful quantity
(without a unit).
The changes in the concentrations of the various particles of our system then must be proportional to dξ and the
proportionality constants are the stoichiometric indices νi. Think about it! However you wiggle - if the
concentration of O2 changes some, the concentration of H2 will change twice as much.
In other words, or better yet, in math, we have

dCi  = νi · dξ

Substituting that into the equation for dG from above, we obtain

d G  = 
i

Σ
1

 μi · ν i · dξ =  dξ ·
i

Σ
1

 μi · νi  =  0

Since dξ is some arbitrary number, the sum term must be zero by itself and we have as equilibrium condition
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i

Σ
1

μi · νi  = 0

This looks (hopefully) familiar. It is the equilibrium condition we had before for particles not reacting with each
other when we looked at the meaning of the chemical potential.

Now all we have to do is to take the "master equation" for the chemical potential so beloved by the more chemically
minded, and plug it into the equilibrium condition for our reactions.

In order to stay within our particle scheme, we use k instead of R and the activity Ai of the component i instead
of its concentration Ci. Feel free to read "activity" as " somewhat corrected concentration" if you are unfamiliar or
uncomfortable with activities. We have

μi  = μ i0  +  kT · ln Ai

And, since we are treating equilibrium, the activity Ai now is the equilibrium activity ai (= concentration ci if
everything would be "ideal") instead of the arbitrary concentration C i because we are treating equilibrium now by
definition.
Inserting this formula in the equilibrium condition from above (and omitting the index "i" at the sum symbol for
ease of writing) yields

Σ (νi · μi0)  +  kT · Σ (ν i · ln ai )  = 0

Going through the mathematical motions now is easy.

Expressing the sum of ln's as the ln of the products of the arguments, and rearranging a bit gives

ln Π (ai)
νi  =  –  

1

kT
 · Σ μi0 · ν i  =  – 

1 

kT
 · ∆G 0

Because Σν i · μ i0 is just the sum over all standard reaction enthalpies involved, which we call ∆G0 .

The product on the right hand side is just a fancy way to write down one part of the mass action law, it would give
exactly what we formulated for the case of 2H2 + O2 ⇔ H2 + O from above. Putting everything in the exponent finally
yields the mass action law:

Π (ai)
νi  =  exp  –  

G0

kT
  =  K –1  =   (Reaction Constant) –1  

It doesn't matter much, but it is standard to write K –1. In other words, put the products of the reaction in the
nominator to get K.

There seems to be a bit of magic involved: We started with arbitrary amounts of components, let them react an
arbitrary amount (we even defined a new quantity, the reaction coordinate ξ) - and none of this shows up in the final
formula! There are certainly some questions.

What's left are only equilibrium concentrations (or activities) - what happened to the starting concentrations?

Can't we derive the mass action law then without introducing quantities that seem not to be needed?

Some short answers:

At some point, we essentially switched to changes (= derivatives) of prime quantities - and everything not
changing is now gone. It is still there, however, if we do real calculations because then we need more information
- the mass action law, after all, is just one equation for several unknown concentrations.
There probably is a more direct way to get the mass action law that does not involve the somehow superfluous
reaction coordinate. However - I do not know it and I'm in good company. Several text books I consulted do not
know a better way either. Still, try the link for some alternatives.

Lets go back to our original question and mix arbitrary amounts of whatever and than let the buggers react. What will
we get, throwing in the reaction equation and possibly some reaction enthalpies?
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The mass action law now gives us one relation between the equilibrium concentration, but not the absolute
amounts. There are, after all, just as many unknowns for the equilibrium concentrations as you have components,
and you need more than one equation to nail everything down.
Additionally, the way we have spelled out the mass action law here also has a number of pitfalls; if you want to
really use it, you must know a bit more, in particular about conventions that must be strictly adhered to.

All that is essentially beyond the scope of this "Defect" lecture, but for the hell of it, a few more modules intertwining
mass action law and chemical potentials were made; they are accessible via the following links.

Pitfalls and extensions of the mass action law

Some standard (chemical) examples of applying mass action law

Alternative derivations of the mass action law

Some defects in ionic crystal related applications of the mass action law

   

Appendix: Some Necessary Math

This appendix contains one of the necessary mathematical transformations used above to refresh your memory

Σ ln (ci)
νi  = ln(c1)ν1  +  ln(c2)ν2  + ....  =  ln{(c1 )ν1 · (c2)ν2 ··· }  =  ln Π (ci)

νi
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