9.8 Exercise 8 77

9.8 Exercise 8

A theoretical introduction for Monte-Carlo-simulation is given in section 8.1. Here we will discuss examples for
diffusion problems which are numerically solved by implementing ”"random walk”. Our final goal is to simulate
the diffusion out of a membrane for which we already did the fitting to experimental data in exercise 9.5.

As a starting point we simulate the diffusion of a limited point source. Most of the program is related to drawing
results and will not be discussed here in detail. The essential simulation part is remarkably short:

function random_walk_point_source
particles_start = 10000;
particles = particles_start;
steps = 2000;
D =1./3;
thickness = 100;

position = zeros(particles, 2);

for i=2:steps
if (mod(i,2)==0)
i_old=1;
i_new=2;
else
i_old=2;
i_new=1;
end
randomsteps = randi([0 2], particles,1)-1;
position(l:particles,i_new) = position(l:particles,i_old) + randomsteps;

i2=1;
while (i2{<}= particles)
if (position(i2,i_new) == (thickness/2)+1)

position(i2,i_new) = position(particles,i_new);
particles= particles-1;
elseif (position(i2,i_new) == -(thickness/2)-1)
position(i2,i_new) = position(particles,i_new);
particles= particles-1;
else
12=12+1;
end
end
part_inside(i) = particles;

end
end

The simulation will be performed for 10000 particles at start and for 2000 steps within a sample with
thickness = 100 (reaching from -thickness./2 to thickness./2). The position(l:particles,i-old) of
each particle is stored in an array and the new positions calculated in each loop step is stored in a second
array position(l:particles,i new). The indexes i_old and i_new are alternating their values in each loop.
allowing for an continuous updating of the values without copying the values from one array to another.

The whole simulation is performed in basically three lines:

e calculating an array of random numbers randomsteps = randi([0 2], particles,1)-1; between -1
and +1;

e adding these random numbers to the actual positions of the particles to calculate their new positions;

e finally all particles outside the limits from -thickness./2 to thickness./2 are taken "out of the game”
particles= particles-1;, i.e. they are assumed to be highly volatile outside the membrane, leaving
instantly the regime of interest. Here one additional trick is used which allows to take out any particle by
just reducing the particle number. Which?



78 Exercises

So first load down the complete example ”random_walk_point_source.m” from the running term page. Run the
program and discuss several items:

e Check for the source code and discuss the meaning of the three graphs representing the results.
e Why is the diffusion constant for the analytical solution D =1./3;7

e Why are deviations from the Gaussian function found for large step numbers?

e Modify the program to simulate the out diffusion as analyzed in the data from the lab course.

Essentially the last job just needs a change in the initialization of the positions of the particles. They have to
be homogeneously distributed within the limits of the sample:

position = zeros(particles, 2);
position(l:particles,1)=round((thickness+1) .*(rand(particles,1)-0.5));

Your next jobs:
e Add a nested function non_scaled_fu to the program mainly by copying it from the exercise 9.5.

e Add this curve to the third graph as a comparison between simulation and theoretical results.

part_inside_theo = particles_start.*(l-non_scaled_fu((0:(steps-1)),D./thickness."2));

function y = non_scaled_fu(t,Dd1lq)

hl = 16.xDd1lq./pi;

index_new = round(0.36/hl);

y= (hl.*t)."0.5;

y(index_new:end) = 1 - (8./(pi."2)) .* exp (-pi."2 .* Ddlq .* t(index_new:end));
end

Your next jobs:
e Rename your function as random_walk homogeneous_distribution_surface_barrier.

e Change the boundary condition to represent an activation energy of E, = 0.03eV at room temperature
for leaving the sample.

e Discuss the physical meaning of this change.

barrier_probability= exp(-0.03./0.025);

i2=1;

while (i2{<}= particles)
if (position(i2,i_new) == (thickness/2)+1)

if (rand(1,1){<}barrier_probability)
position(i2,i_new) = position(particles,i_new);
particles= particles-1;

else
position(i2,i_new) = (thickness/2);
i2=1i2+1;
end
elseif (position(i2,i_new) == -(thickness/2)-1)

if (rand(1,1){<}barrier_probability)
position(i2,i_new) = position(particles,i_new);



9.8 Exercise 8 79

particles= particles-1;

else
position(i2,i_new) = -(thickness/2);
i2=12+1;
end
else
12=i2+1;
end
end
end

As often in Monte-Carlo simulation the effort for implementing such new boundary conditions is minimal. For
solving the differential equation analytically you would have to start from the scratch to implement this changes
and the solutions would look completely differently.



