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9.7 Exercise 7

A theoretical introduction to solving numerically ODE is given in section 7.1. Here we will discuss examples of
ODE of second order. Our first example is

d2y

dt2
= −y (9.12)

� Translate the above differential equation of second order into a set of differential equations of first order

� Check MATLAB HELP for ode45. Here you will find an example very close to the above problem

� Copy the corresponding lines into a function and adapt the starting values to find cos(x) as the solution
to the above problem

� Adapt the starting values to find sin(x) as the solution to the above problem

� Change the program to find exp(x) as solution

� Change the program to find exp(−x) as solution

� Change the program to find sinh(x) as solution

� Change the program to find cosh(x) as solution

function [T,Y] = mydglsolv

[T,Y] = ode45(@myodefun,[0 2.*pi],[1 0]);

plot(T,Y(:,1),’-’,T,Y(:,2),’-.’);

function dy = myodefun(t,y)

dy = zeros(2,1);

dy(1)=y(2);

dy(2)=-y(1);

end

end

Our next example is a reaction scheme specifying three kinetic coefficients k1, k2, and k3 for the following
reaction chain

I1
k1

⇌
k′

I2
k3−→ I3 . (9.13)

Assuming all reactions to be of first order this scheme translates into a set of differential equations

dI1
dt

= − k1 I1 + k2 I2 ,
dI2
dt

= + k1 I1 − k2 I2 − k3 I2 ,
dI3
dt

= + k3 I2 . (9.14)

As starting values we choose I1(0) = 1, I2(0) = 0, and I3(0) = 0. As kinetic coefficients we take k1 = 1,
k2 = 0.5, and k3 = 0.05. The implementation in MATLAB is easy:

function [T,Y] = my_chemical_odesolv

k1=1;

k2=0.5;

k3=0.05;

[T,Y] = ode45(@myodefun,[0 100],[1 0 0]);

plot(T,Y(:,1),’-’,T,Y(:,2),’-.’);

function dy = myodefun(t,y)

dy = zeros(3,1);

dy(1)=-k1.*y(1)+k2.*y(2);

dy(2)=+k1.*y(1)-k2.*y(2)-k3.*y(2);

dy(3)=+k3.*y(2);

end

end
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Figure 9.3: Numerical solution of the set of differential equations: I1(t), I2(t), I3(t), and the
ratio I2(t)/I1(t).

The solution are shown in Fig. 9.3. In what follows we will briefly discuss three concepts often used for discussing
transport and kinetics:

1. rate limiting step

2. pre- steady state condition

3. steady state

The rate limiting step is always the slowest process, i.e. that with the smallest kinetic coefficient, in our case k3.
Somehow counter intuitively not the large kinetic coefficients dominate the time dependencies, but the slowest
process needs the longest time to reach steady state.
Steady state means that no changes in time exist, i.e. all derivatives on the left hand side of the set of differential
equations are zero. From the third equation we find I3(t → ∞) = 0. Therefore from the first equation we find
I1(t → ∞) = 0. From particle conservation we find I3(t → ∞) = 1. This are the relations visualized in Fig.
9.3; additionally the ration of I2/I1 is shown. Obviously this ratio reaches a constant value long before steady
state is reached. This effect is called pre-steady state condition and is implied by the large kinetic coefficients
k1 and k2. Taking for the moment k3 = 0 the (pre-) steady state condition is reached for dI1/dt = dI2/dt = 0,
i.e. k1/I1 = k2/I2 or I2/I1 = k1/k2. This value is very close to the ration found from Fig. 9.3. The deviation
can easily be understood from an analysis in linear order in k3. We will write

I2 =
k1 −∆

k2
I1 i.e.

dI2
dt

=
k1 −∆

k2

dI1
dt

− 1

k2

d∆

dt
I2 ≈ k1 −∆

k2

dI1
dt

(9.15)

The last equation holds for pre-steady state since in this regime the ration between I2 and I1 is constant, i.e.
∆ is constant.
Including this into the set of differential equations we get

dI1
dt

= −∆ I1

dI2
dt

= +∆ I1 − k3
k1 −∆

k2
I1

dI3
dt

= + k3
k1 −∆

k2
I1

(9.16)
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So for pre-steady state we find

k1 −∆

k2
=

I2
I1

≈ dI2/dt

dI1/dt
= −

∆− k3
k1−∆
k2

∆
(9.17)

i.e.
k1 ∆−∆2 = −k2 ∆+ k3(k1 −∆) (9.18)

Since we discuss the problem in linear order in k3, i.e. ∆ ∝ k3, we ignore ∆2 (it is tiny!) and find

∆ = k3
k1

k1 + k2 + k3
(9.19)

So at pre-steady state

I2 =
k1
k2

k1 + k2
k1 + k2 + k3

I1 , (9.20)

somewhat smaller than for k3 = 0.
For the set of differential equations we find

dI1
dt

= −k3
k1

k1 + k2 + k3
I1

dI2
dt

= −k3
k1
k2

k1
k1 + k2 + k3

I1

dI3
dt

= +k3
k1
k2

k1 + k2
k1 + k2 + k3

I1

(9.21)

which in a very good approximation reflect the numerical solutions in Fig. 9.3. So as typical we can use the
exact numerical results to identify possible simplifications to find good/reasonable analytic approximation of
the numerical results. Here we learned most from the constant ratio of I2/I1 for nearly the whole time of the
simulation.
Your next jobs:

� Use your program to check for the accuracy of the Eqs. (9.21).

� Change your program so that the rate determining step is of second order.

� Why does it take much longer before steady state is reached?

� Discuss your results in terms of half life time.

� Use log plots and log-log plots of your numerical results to identify if the solutions reflect an exponential
law (linear order reaction) or a power law (second order reaction).


