
9.6 Exercise 6 73

9.6 Exercise 6

The theory for numerical integration is discussed in chapter 6.1. Here we will deal with an example of solving
integrals numerically, for which no analytical solution exists. The Gaussian bell shape function shows up as
solution in many problems including probability theory and many physical problems like the solution of diffusion
equations. For σ = 1 it is

F (x) =

∫ x

−∞

1√
2π

exp

(
−y2

2

)
dy (9.10)

The normalization is chosen to have F (+∞) = 1, i.e. to represent a probability density.
For numerically solving this problem we will used the MATLAB function quadgk.

� Check MATLAB HELP and write a small program for calculating and plotting F (x) between xmin = −10
and xmax = +10

� Make sure that you properly incorporate the information in MATLAB HELP about the function to be
integrated: The function y = fun(x) should accept a vector argument x and return a vector

result y

� Check and discuss the correctness of your result

� Although quadgk can deal with limits ±∞ avoid this in your function and use analytical reasons for
finding a numerically correct solution.

Numerical integration consumes much CPU time. Thus for many highly relevant integrals numerical efficient
approximation exist to reduce the computational effort. For our example it is the error function. As for many
examples, the error function does not directly solve our problem but needs for some parameter adaptation. Check
MATLAB HELP for the definition and implementation of the error function. Find the necessary parameter
transformation to calculate F (x) using the error function.
Next we will use a set of Zi(ti) data points from a TD-exercise to repeat fitting and interpolation. Subsequently
we use the MATLAB routine quadgk to perform the integration for calculating

γ = exp

(∫ p

0

Z − 1

p
dp

)
(9.11)

The most easiest way to do this is just to open the old examples

� function fit test

� function my cubic spline test

combine them and use a nested function function y=y from spline(t) on which quadgk is applied to calculate
numerically the integral from 0 to 100.

function [c, gamma] = td_fit_int

p = [1.0 4.0 7.0 10.0 40.0 70.0 100.0]’;

Z = [0.9971 0.98796 0.9788 0.96956 0.8734 0.7764 0.6871]’;

y = (Z-1)./p;

E = [ones(size(p)) p p.^2];

c = E\y;

P = (1:1:100)’;

Y = [ones(size(P)) P P.^2]*c;

cs = spline(p,y);

YY = ppval(cs,P);

gamma = quadgk(@y_from_spline,0,100);

plot(P,Y,’-’,p,y,’o’,P,YY,’-r’);

function y=y_from_spline(p)

y= ppval(cs,p);

end

end


