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5.3 Partial Pivoting

For the Gauss elimination method to work it is necessary that at each step k there is a nonzero coefficient at
variable xk in line k, since otherwise one cannot use the k-th line to eliminate xk in the remaining lines i > k.

Moreover, since one must divide by the value of this coefficient a
(k)
kk (the upper, bracketed index refers to the

step number) to determine the multipliers mik, for a numerical computation it is important that this value is
not too close to zero in order to prevent numerical errors becoming large.

Since a
(k)
kk plays such a crucial role, it is called the pivot element. If it is zero or too small, one has

to interchange the contents of the present row k with that of another row j > k where the corresponding
coefficient (at xk) is neither zero nor too small. Numerically best suited for this is the row with the largest
absolute coefficient, i.e. the largest of

|a(k)k+1 k|, |a
(k)
k+2 k|, . . . , |a

(k)
nk |.

This choice of a new pivot element by a permutation of rows is called partial pivoting. Full pivoting would
be to also interchange the columns of A in order to possibly obtain an even larger value for the new pivot
element. As a result of partial pivoting, besides L and U one also obtains the row permutation matrix P (the
result therefore being called an LUP decomposition); it holds that

PA = LU. (5.11)

Example:

A =

 1 2 3
1 2 4
3 8 13

 =: A(1) → A(2) =

 1 2 3
0 0 1
0 2 4

 → PA(2) =

 1 2 3
0 2 4
0 0 1

 =: U (5.12)

The first-step multipliers are m21 = 1 and m31 = 3. To proceed, P has to interchange the 2nd and 3rd row,
which also affects the construction of L. Since further elimination is not necessary, one has l21 = 3, l31 = 1,
l32 = 0 (lkk = 1). With these it can be verified that Eq. (5.11) holds.


