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5.2 Gaussian Elimination Method

We assume that rank(A) = n [or, that det(A) ̸= 0], i.e. the system Ax⃗ = b⃗ is uniquely solvable. The idea of the

Gaussian elimination method is to transform the original system Ax⃗ = b⃗ to an equivalent system of equations
in triangular form. The new system can then easily be solved from bottom to top.

Example:

2x1 + x2 + 3x3 = 73,

6x1 + 5x2 + 4x3 = 168,

4x1 + 6x2 + 7x3 = 209.

(5.2)

Step 1: Eliminate x1 from the 2nd and 3rd equations by applying to them appropriate multiples of the 1st
equation; remember the relevant multipliers.

2x1 + x2 + 3x3 = 73,

2x2 − 5x3 = −51, (2nd Eq. minus 6
2×1st Eq. → m21 = 3)

4x2 + x3 = 63. (3rd Eq. minus 4
2×1st Eq. → m31 = 2)

(5.3)

(mi1 — multipliers with which the 1st equation was multiplied so that the variable x1 vanishes in the i-th
equation.) Step 2: Similarly, eliminate x2 from the 3rd equation.

2x1 + x2 + 3x3 = 73,

2x2 − 5x3 = −51,

11x3 = 165. (3rd Eq. minus 4
2×2nd Eq. → m32 = 2)

(5.4)

(m32 — multiplier with which the 2nd equation was multiplied so that x2 vanishes in the 3rd equation.) This
system of equations obviously leads to the following results:

x3 = 165
11 = 15,

x2 = 1
2 (−51 + 5x3) = 12,

x1 = 1
2 [73− (x2 + 3x3)] = 8.

(5.5)

Note that according to Eq. (5.4), the linear system under consideration can also be written as Ux⃗ = g⃗ with

U =

 2 1 3
0 2 −5
0 0 11

 , g⃗ =

 73
−51
165

 . (5.6)

The letter U is chosen here since in this matrix, only the upper triangular part (above the main diagonal) is

occupied. Inverting the steps that led from Eq. (5.2) to Eq. (5.4), it becomes clear that b⃗ = Lg⃗ with

b⃗ =

 73
168
209

 , L =

 1 0 0
3 1 0
2 2 1

 . (5.7)

The letter L is chosen here since in this matrix, only the lower triangular part (below the main diagonal) is
occupied. Obviously, the non-diagonal elements of L are the multipliers mij . Using Ux⃗ = g⃗, one has that

b⃗ = Lg⃗ = LUx⃗, (5.8)

which by comparison with Ax⃗ = b⃗ implies that
A = LU. (5.9)

This illustrates the following

Theorem: LU decomposition (without proof)
For a non-degenerate matrix A it holds that A = LU with lower (L) and upper (U) triangular matrices if all its
leading principal minors (determinants of the upper left sub-matrices) are non-zero. This factorization is called
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LU decomposition of A.

Remark: usage of LU decomposition for solving linear systems
Using the LU decomposition, the linear system Ax⃗ = b⃗ can easily be solved in two steps: First, g⃗ is determined
from Lg⃗ = b⃗; second, x⃗ is determined from Ux⃗ = g⃗. Since both L and U are triangular matrices, no further
matrix inversion is needed; all variables can be determined successively, as shown in the example above. Note
that since calculating the LU decomposition numerically (in Matlab this is done by lu) is a demanding task

for larger matrices, this is worthwhile only if the same system Ax⃗ = b⃗ has to be solved several times, for different
b⃗.

Implication 1: calculation of the determinant
With the LU decomposition of A one has that det(A) = det(LU) = det(L) det(U). Since the determinant of a
triangular matrix is given by the product of its diagonal elements, this can be calculated rather easily. Moreover,
if (as in the example above) L is a unit lower triangular matrix (all the entries on its diagonal are 1), only the
product of the diagonal elements of U remains (irrelevant entries are symbolized by asterisks):

det(L) det(U) = det


1 0 . . . 0

∗ 1
. . . 0

...
. . .

. . .
...

∗ ∗ . . . 1

 det


u11 ∗ . . . ∗

0 u22
. . . ∗

...
. . .

. . .
...

0 0 . . . unn

 = u11u22 · · ·unn. (5.10)

Implication 2: calculation of the inverse matrix
Not only a linear system Ax⃗ = b⃗ can be treated using the LU decomposition but also a matrix equation AX = B,
since in the latter equation the columns of X and B can be treated separately as the former vectors x⃗ and b⃗. If
B is chosen to be the unit matrix, then X will be the inverse of A. More explicitly: If b⃗ is the i-th unit vector
e⃗i (having a 1 at position i and zeros elsewhere), then the solution of Ax⃗i = e⃗i will be the i-th column of A−1.


