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Figure 3.1: Interval bisection method (four iterations). x̄ is the searched-for zero.

3.3 Interval Bisection Method

This method is an algorithm to find a zero of a function by repeated bisection of an interval and determination
of the sub interval where the zero must be found. It is simple and reliable, but relatively slow.

Consider an interval [a, b] and a function f that has different signs at the boundaries of that interval:
f(a) f(b) < 0 (cf. Fig. 3.1). Therefore, for a continuous function f there must be at least one zero within the
interval [a, b]. To numerically approach a zero x̄ of f , the midpoint of the interval is taken as first approximation
(with a1 = a, b1 = b):

c1 = a1 +
b1 − a1

2
=

b1 + a1
2

. (3.7)

The maximum absolute error of this approximation obviously is half of the original interval width:

|c1 − x̄| ≤ b1 − a1
2

. (3.8)

If this error is considered too large, one has to repeat the bisection for the subinterval where the zero must
be found. It can be determined from a change of sign of f , which can occur for one of the sub intervals only
(either for [a1, c1] or for [c1, b1]). This determines the choice of the interval [a2, b2] for the next step:

f(a1) f(c1) < 0 ⇒ a2 = a1, b2 = c1;

f(c1) f(b1) < 0 ⇒ a2 = c1, b2 = b1.
(3.9)

In the new interval [a2, b2] one determines again the midpoint c2 = (a2 + b2)/2. The maximum absolute error
then becomes

|c2 − x̄| ≤ b2 − a2
2

=
b1 − a1

4
. (3.10)

If accidentally at some step k the midpoint is the sought-after zero, then f(ak) f(ck) = f(ck) f(bk) = 0 and the
iteration must stop. However, see also remark 3 below.

If an, bn, cn are the relevant values for the nth step, then (remember that a1 = a, b1 = b)

bn − an =
b− a

2n−1
, |cn − x̄| ≤ bn − an

2
=

b− a

2n
. (3.11)

Since limn→∞
1
2n = 0, one has that limn→∞{cn} = x̄, i.e. this method converges. Since in each step the

maximum absolute error is reduced by a factor 1
2 , the convergence behavior is called linear with a factor 1

2 .
This factor is also called rate of convergence.

The advantage of the bisection method is that it always converges. However, it is a slow process. To reach
a maximum error |cn − x̄| ≤ ϵ with a given ϵ corresponds to (b− a)/2n ≤ ϵ. Therefore, one can determine the
number of necessary bisection steps from 2n ≥ (b− a)/ϵ as

n ≥ log2
b− a

ϵ
. (3.12)



28 Finding Zeros

Remark 1: non-detectable zeros
The interval bisection method relies on a change of the sign of f . However, f might have a zero where the
sign does not change, i.e. where the graph does not cross the x axis but an osculation occurs (as, e.g., at the
extremum of a parabola). Such a second-order zero cannot be found by the interval bisection method.

Remark 2: multiple zeros
The interval bisection method always converges to a zero of f . However, f might have several zeros in [a, b].
This will not be noticed by the interval bisection method, which therefore will find only one of them—but it is
not clear which one will be found.

Remark 3: numerical stability
To detect a change of the sign of f , the interval bisection algorithm is formulated above in terms of a product
of two function values. Since a zero of f is approached, these values can become very small, so that their
product may lead to numerical underflow. This can furthermore be confused with the case that accidentally the
midpoint is the sought-after zero, i.e. not the product but already a single function value equals zero. A robust
numerical implementation must take care of these possibilities and should not use products of function values.

Remark 4: numerical accuracy
In general, the best accuracy that can be reached for the value of the zero does not equal the machine precision.
This is related to the influence of the limited precision of floating-point arithmetic: The larger a number (by
absolute amount), the larger its exponent will be, which means that the last digit of its mantissa will represent
a larger value than for smaller numbers. Therefore, because of always having the same (or a similar) number
of significant digits available independent of the absolute value, the absolute error of large numbers must in
general be larger than that of small numbers. Because of that, only the relative error can be used as a measure
of numerical accuracy (i.e. to determine when to end the iteration; an example will be given in Sect. 5.1 below).
In other words, the machine precision determines the smallest relative error reachable. Specifying an ϵ for the
relative error smaller than the machine precision does not make sense and should be prevented. But see also
remark 5 below.

Remark 5: numerical reliability
Additionally, not only the deviation with respect to the x value might be of interest: It may happen that the
function has a rather steep slope at the zero, so that despite of a small relative error, |cn − x̄| /|x̄| ≤ ϵ ≪ 1, a
function value f(cn) may occur that is still large. Therefore it is advisable to check this after a zero has been
determined numerically.

On the other hand, if the function has a rather low slope at the zero, the interval of very small function
values can be rather large, which implies that the problem of numerical underflow described in remark 3 above
might occur already before the prescribed accuracy has been reached. Then, the algorithm will most likely exit
with an unreliable value. Obviously, in such a case it does not make sense to specify too small an ϵ for the
relative error.

General remark: common problems
The problems treated in remarks 1 through 5 above (roughly: existence and well-definedness of a solution for a
certain algorithm, numerical stability/accuracy/reliability of the respective implementation) are not only related
to the subject of finding zeros, but apply to numerical problems in general.


