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3.2 Fixed Points: A Footing for Iterative Methods

Definition: A function f has a fixed point x̄ if f(x̄) = x̄.
Such a situation is of interest e.g. when dealing with equations that cannot be solved analytically. As illustrating
examples, consider x− cosx = 0 and e2x − 2x− 2 = 0, which can be written as cosx = x and 1

2e
2x − 1 = x, i.e.

they are both of the type f(x) = x.Sometimes it is not possible to directly rewrite a given equation as f(x) = x
but merely as g(x) = h(x). However, if one of these auxiliary functions (h, say) is analytically invertible, then
h−1(g(x)) = x and one can proceed as described. From a graphical representation one can easily see that
the first equation has one solution and the second equation has two solutions. How can these be determined
numerically?

The name ”fixed point” is related to the fact that for values x other than x̄ and belonging to a certain interval
containing x̄, f(x) will deviate from x. (One needs to consider such an interval containing x̄ since f might have
several fixed points x̄k; compare the above example.) On the other hand, one might find a fixed point of f by
trying several x values and compare them with f(x), thereby noticing in which direction to proceed. Then, if
starting from a value x0 which is already close to x̄, can one expect to obtain as x1 = f(x0) a value which lies
even closer to x̄?

This question is answered by the famous Banach fixed-point theorem which is of very general nature. For a
real-valued function f that is contractive on [a, b], that is, which maps the interval [a, b] onto itself (i.e., for all
x ∈ [a, b] also f(x) ∈ [a, b]) in such a way that any two points of [a, b] are mapped closer together (more precise:
for all xi, xj ∈ [a, b] one has that

|f(xi)− f(xj)| ≤ q|xi − xj |, with 0 ≤ q ≤ 1, (3.1)

this theorem shows (i) that f has exactly one fixed point x̄ in [a, b] and (ii) that this fixed point is reached
as limiting value of the iterative scheme xn+1 = f(xn), which is convergent for any starting point x0 (i.e.,
x̄ = limn→∞ xn, x0 ∈ [a, b] arbitrary). Moreover, for the maximum absolute error of any approximate value xn

it holds that

|xn − x̄| ≤ q

1− q
|xn − xn−1| =

qn

1− q
|x1 − x0| . (3.2)

If this function f is continuously differentiable in [a, b], one has according to the mean-value theorem that, for
some suitable ξ ∈ [a, b],

|f(xi)− f(xj)| ≤ |f ′(ξ)||xi − xj | . (3.3)

Comparing this with Eq. (3.1) it follows that f is contractive—and, accordingly, has a fixed point in [a, b] which
can be found iteratively—if

|f ′(x)| ≤ q ≤ 1 for all x ∈ [a, b] . (3.4)

Example:

Consider, as above, f(x) = 1
2e

2x − 1 and [a, b] = [−1,− 1
2 ]. Then,

f ′(x) = e2x ≤ e−1 ≤ 1 for all x ∈ [−1,− 1
2 ] . (3.5)

Therefore, the iterative scheme xn+1 = f(xn) converges, q = e−1, and since |x1−x0| ≤ 1
2 (length of the interval

[−1,− 1
2 ]) one has from Eq. (3.2) that

|xn − x̄| ≤ e−n

1− e−1

1

2
. (3.6)

This means that after seven steps of the iteration (n = 7), the maximum absolute error is |xn − x̄| ≤ 1
2

e−7

1−e−1 ≈
0.0007, i.e. at least the first three digits after the unit position are significant. (Result: x7 = −0.9207.)
On the other hand, for [a, b] = [ 12 , 1] (where the other fixed point of f is expected) one has that f ′(x) = e2x ≥
e > 1 for all x ∈ [ 12 , 1]. Therefore, the second solution cannot be found by this iterative scheme. However, there
are two other possibilities to determine this missing solution:

1. Instead of solving the given problem f(x) = x, the function f can be inverted to give x = f−1(y), and the
corresponding problem f−1(y) = y can be solved (which is helpful since obviously ȳ = x̄). This is possible
because one has that (f−1)′(y) = f ′(x)−1 ≤ 1 where f ′(x) > 1.

2. Instead of solving the problem f(x) = x, a new function g is defined, g(x) = f(x)− x, and the zeros of g
are determined. The corresponding methods will be the subject of the following sections.


