1.10 Numerical Errors: Basic definitions

Definition 1: error and absolute error

Consider a quantity x, and \tilde{x} as an approximation for x, then $D_{\tilde{x}} = \tilde{x} - x$ is called the error of \tilde{x} and $|D_{\tilde{x}}| = |\tilde{x} - x|$ the absolute error of \tilde{x} .

Examples:

1.
$$x = 2.1, \ \tilde{x} = 2 \qquad \Rightarrow D_{\tilde{x}} = -0.1, |D_{\tilde{x}}| = 0.1$$

2. $x = \sqrt{2}, \ \tilde{x} = 1.4 \qquad \Rightarrow D_{\tilde{x}} = ?$
3. $x = \pi, \ \tilde{x} = 3.14 \qquad \Rightarrow D_{\tilde{x}} = ?$
(1.12)

In general, the error cannot be determined exactly, because we don't know the exact value of x. In this case, we try a (possibly small) bound for specifying the absolute error.

Definition 2: absolute maximum error

Consider a quantity x, and \tilde{x} as an approximation for x, and a > 0 a number with $|D_{\tilde{x}}| \leq a$, then a is an absolute maximum error of \tilde{x} .

Example:

Consider
$$x = \sqrt{2}$$
, $\tilde{x} = 1.4$; estimation for a?
Since $1.4^2 = 1.96 < 2$ and $1.42^2 = 2.0164 > 2$,
one has that $1.4 < \sqrt{2} < 1.42$, therefore
 $|\sqrt{2} - 1.4| = \sqrt{2} - 1.4 < 1.42 - 1.4 = 0.02 = a.$ (1.13)

(0.015 could also be derived as a maximum error for this example.)

Definition 3: relative error

Consider a quantity x, and \tilde{x} as an approximation for $x, x \neq 0$, then $|D_{\tilde{x}}|/|x|$ is called the relative (percentage) error of \tilde{x} . Since x is often not known, the relative error is estimated by $|D_{\tilde{x}}|/|\tilde{x}|$.

Examples:

1.
$$x = 100 \,\mathrm{m} = 10000 \,\mathrm{cm}, \ |D_{\tilde{x}}| = 1 \,\mathrm{cm} \Rightarrow \frac{|D_{\tilde{x}}|}{|x|} = \frac{1}{10000} = 0.0001 = 0.01$$

2. $x = 2 \,\mathrm{cm}, \ |D_{\tilde{x}}| = 1 \,\mathrm{cm} \Rightarrow \frac{|D_{\tilde{x}}|}{|x|} = \frac{1}{2} = 0.5 = 50$

$$(1.14)$$

Definition 4: significant digits

The amount of significant digits is a measure of the *accuracy* of an approximative number. It is determined as follows:

1. Consider a quantity $x, |x| \ge 1$, and \tilde{x} as an approximation for x, given as a decimal number with the digits $\pm a_k a_{k-1} \ldots a_1 a_0 . a_{-1} a_{-2} \ldots a_{-n}$, i.e. each $a_i \in \{0, 1, ..., 9\}$ representing the value $a_i \times 10^i$, $a_k \ne 0$. Let j denote the smallest integer with $|\tilde{x} - x| \le \frac{1}{2} \times 10^j$. Then we call the digit a_j of \tilde{x} significant (or secure) and likewise, all the digits on the left of a_j .

Example:

Consider x = 23.494321, $\tilde{x} = 23.496$; how many significant digits? Since $0.0005 < |\tilde{x} - x| = 0.001679 \le 0.005 = \frac{1}{2} \times 10^{-2}$, one has that j = -2. $\tilde{x} = 23.496 \Rightarrow$ start counting from the 9 until the beginning of the number $\Rightarrow 4$ significant digits (places). (1.15)

2. Consider a quantity x, |x| < 1, and \tilde{x} as an approximation for x, given as a decimal number with the digits $\pm 0. a_{-1} a_{-2} \ldots a_{-n}$, i.e. each $a_i \in \{0, 1, \ldots, 9\}$ representing the value $a_i \times 10^i$. Let j denote the smallest integer with $|\tilde{x} - x| \leq \frac{1}{2} \times 10^j$. Then we call the digit a_j of \tilde{x} significant (or secure) and likewise, all the digits on the left of a_j up to the front digit $\neq 0$.

Example:

Consider x = 0.02144, $\tilde{x} = 0.02138$; how many significant digits? Since $0.00005 < |\tilde{x} - x| = 0.00006 \le 0.0005 = \frac{1}{2} \times 10^{-3}$, one has that j = -3. $\tilde{x} = 0.02138 \Rightarrow$ start counting from the 1 to the left until the last digit $\neq 0$ (i.e., until only zeros follow) $\Rightarrow 2$ significant digits (places). (1.16)

Remark: accuracy vs. precision

A number can be highly precise but completely inaccurate (many places, but none of them significant).