Pictures to:

6.3 Pores in Semiconductors

Thus is a picture that shows macropores in Si that almost extend throughout the thickness of the specimen. I'm not sure where it was published that's why I I give no references. Find then yourself; it's easy.

A self-organized single pore crystal in InP. The inset shows the Fourirer transform ("diffraction" picture) and proves the single crystal property.

This crystal results form self-organized current oscillations in space (see below) or some of the papers given

As above, but at larger magnification.

A frustrated pore crystal in Si. The inset shows the Fourier transform and the crystallinity relative to the second nearest pores.

Refer to one of the many papers / presentations for details

Pore structure in InP developing into "Pore bundle" oscillations. A rather weird case of self-organization but understandable within our meta theory of pore formation.

Асс.∨ Spot Magn WD

As above at higher magnification.

Acc.V Spot Magn WD 5 µm 10.0 kV 3.0 5434x 9.4 AMAT Kiel

The pore growth mode transition between crystal and curro pores becomes visible.

Pore growth mode transition between curro and crysto pores in InP

Visualization of the three-dimensional single pore crystal in InP.

Attempt for making wave guides in a InP substrate by using the special properties so pore growth

