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The Black-White Vector 7 of Small Dislocation Loops
on Transmission Electron Mieroscope Images
By
M. WiLkENs and H. Forr)

Starting from the analytical approximation of the black—white contrast figures of small dis-
location loops a simple analytical expression is derived for the angle ¢; between the black-white
vector I and the diffraction vector g for dynamical two-beam conditions. It is shown that ¢
depends essentially only on the direction of a vector m (— “mean orientation vector™™) which
bisects the acute angle between the Burgers vector b and the plane normal n of the dislocation
loop. The influence of the shear angle & (— acute angle between b and n) on ¢, is in general
negligible.

Ausgehend von der analytischen Niaherungslésung der Schwarz-WeiB-Kontraste kleiner Ver-
setzungsringe wird ein analytischer Ausdruck abgeleitet fiir den Winkel ¢; zwischen dem Schwarz—
WeiB-Vektor I und dem Beugungs-Vektor g im dynamischen Zweistrahlfall. Es wird gezeigt. dall
¢; im wesentlichen durch die Richtung eines Vektors m (= ..mittlerer Orientierungs-Vektor™)
bestimmt wird. wobei m den spitzen Winkel zwischen Burgers-Vektor b und Ebenennormale n
des Versetzungsringes teilt. Der EinfluB des Scherwinkels & (spitzer Winkel zwischen b und n)
auf ¢; ist im allgemeinen zn vernachlissigen.

1. Introduetion

Dislocation loops which are too small to be resolved as loops on transmission elec-
tron mieroscope images can be analysed in terms of their erystallographic parameters
(Burgers vector b, normal vector n of the loop plane) by means of the black-—white
(BW) contrast method [1 to 6] In the first papers concerning this subject {7, 8] it
was assumed that the direction of the so-called BW vector I (pointing from the centre
of the main dark lobe to the centre of the main bright lobe of a B\ contrast figure) is
parallel to the direction of by, where by, is the projection of the Burgers vector b of
the loop onto the image plane, i.e. the plane of the micrograph. Later it was recognized
by an inspection of computer-calculated two-dimensional BW contrast figures of pure
edge loops in elastically isotropic crystals that this assumption is not correct [5]: If
¢ and ¢y are the acute angles in the image plane between the diffraction vector g
and I and between g and by, respectively, it turned out that in the cases considered
in [5] the ratio ¢;/¢p was in general only 0.6 to 0.7 instead of unity. Further, con-
sidering the BW contrast of loops with shear components (b inclined to the loop
plane) Riihle and Wilkens [9] could not find any simple relation between ¢; and ¢y,

In the meantime an analytical first-order perturbation solution was derived [4],
deseribing the BW contrast of small dislocation loops. This first-order perturbation
solution is in particular suitable for a fast calculation of the constant-intensity contour
diagrams in the “outer regions” of a BW contrast figure.2)

1) Present address: Department of Materials Science and Engineering, Cornell University.
Ithaca, N.Y., USA.

*) A BW contrast figure may be subdivided into the “inner region™ (diameter of the order of
the loop diameter) and the “outer region”. The present paper is concerned with the contrast in
the outer region. Special features of the BW contrast in the inner region which are useful for the
determination of b are discussed by Eyre et al. [5, 6] and Katerbau [10].

@



556 M. WiLkExs and H. FéLL

The analytical solution has proved to be very useful for a detailed analysis of the
directions of b and n of the dislocation loop responsible for the BW contrast. This is
done by comparison of the characteristics of the shapes of experimentally observed
and theoretically predicted contrast figures without making use of the concept of BW
vector I, cf., e.g., [11, 12]. On the other hand, the angle ¢; as introduced above can
be measured fairly easily on experimentally obtained BW contrast figures. Therefore,
it appears worthwhile to investigate theoretically the dependence of the angle ¢, as
a function of the directions of » and b. This is the subject of the present paper.

2. Charaeterization of Loop Orientations: The Mean Orientation Vector m

We use a Cartesian coordinate system with the origin in the upper specimen surface
through which the electrons penetrate into the specimen (z-axis parallel to the electron
beam, wx-axis parallel to the diffraction vector g). Within the image plane (x—y plane)
we also use polar coordinates p and ¢,

0® =2+ y?, tan (rzfz, (2.1)

with p = 0 at the image position of the loop centre.

In addition to the normal n of the loop plane and the Burgers vector b of the loop
we introduce a “‘mean orientation vector” m which bisects the acute angle between
n and b,

o 2.9

= e (2.2)

with 8 = b/|b|. The upper (lower) sign holds for loops of vacancy type characterized
by n - b > 0 (interstitial type: n - b < 0), cf. [4].

We denote the unit vectors n, 8, and m either by their direction cosines, i.e., we
write them in the form

V= ("‘Iy Uys Uz) ’ (2'3)

where » stands for n, 8 or m, respectively, or by the acute angle between g and the
projection of » onto the image plane, ¢,, and the angle between v and the image
plane, «,. The following relation then holds:

v, "
tan @p = —2, sin ap = v, . (2.4)
Ux
A non-edge loop (“loop with shear component™) is described by the “‘shear angle™

& between n and 8 such that
cose = [n-B|. (2.5)

In the following we consider for non-edge loops two extreme cases concerning the
mutual orientation of n and g3, cf. Fig. 1:

Fig. 1. Stereographic projections of

the unit vectors n and g for non-edge

loops. a) Case A, equation (2.6): b)
case B, equation (2.7)
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Case A B: = +mn. (2.6)
with - (—) for loops of vacancy (interstitial) type.
Case B 8 = Pn vacancy type , } 2.7)
=@un+ 7 interstitial type .

3. Constant-Intensity Contour Diagrams

The analytical representation of the constant-intensity contour diagrams of BW
contrast figures of small dislocation loops in elastically isotropic crystals [4] may be
written in the form

C :
0o =+7F@), (3.1)

where AT is the relative deviation from the background intensity. The term (', which
will not be considered here in detail, oscillates in sign and magnitude with the depth
position z, of the loop centre in the foil, i.e. C' describes the structure of the so-called
layers of depth oscillations [1, 4, 8]. In the following we assume that the loop centre
are located well within these layers, i.e. sufficiently apart from their borders. If this
is not the case the structure of the BW contrast figure is more complicated (Riihle
[13], cf. also [4, 6]). The angular function F(¢) is given by

F(q) = FO(g) -+ ¢F(g), (3.2)
=y cOS (¢ + g cos 3¢ -+ by sin ¢ - by sin 3¢ (3.3)

with
Ap = a,, —4- qu 5 = bm - qbff) . (3.4)

The coefficients a',’, b’ (1 =1, 2) are funct»xons of Poisson’s ratio » and depend bi-
linearly on the direction cosines of n and B, cf. [4]. The term g is of the order of unity
and depends weakly on 0. We neglect this p-dependence and set

| (3.5)

throughout this paper.?) Under this condition the coefficients «,, b, take the form as
given in the Appendix.

e 50
Fig. 2. Constant-intensity contour diagrams g ﬁ ’ w

(as calculated by means of (3.1) with |C'/AT| =
= 1l and » = } ) for non-edge loops having the
same mean orientation vector m but different
shear angles e. The dark and the bright lobes g ’ ’ @
are shown in one case only. In the other cases
the dark lobes (which are always centro-sym-

metric to the bright lobes) are omitted for sim- £=0° 0
plicity. A and B refer to (2.6) and (2.7), respec-

400
o
tively. The BW vector 1 drawn tlnough the
lobes are calculated by means of (4.2). a) gy =
= 60°, ayn = 30°; b) @m = 75°, am = 0° p _;‘ &

0

3) In [4] the function F(p) was approximated by F(¢) =~ 1.5F(1)(p) because F()(p) =~ 0.5F1)(¢)
holds in many cases. Foll [14] has shown that this approximation may give rise to inconsistent
results. This is true in particular if the criterion «/a’ = —0.5 for the visibility of a BW contrast
figure as proposed in [4] is applied to cases where » is small and n and b are close to the y-axis.
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We have applied (3.1) to a number of non-edge loops having the same mean orienta.-
tion vectorm. Fig. 2 contains some repreeentatwe examples referring to » = -, - It is
found that the directions and strengths of the main lobes (black or white) are hardlv
affected by & == 0.

In the case A (equation (2.6)) there is some minor influence of & on the strength of
the subsidiary lobes wlnch becomes noticeable, however, only for £ == 30° (for the
classification into ,,main” and , subsidiary™ lobes see [3, 4]). In the case B (equation
(2.7)) this influence is negligible.

In this context it is worthwhile to mention that, in general, the strength of the sub-
sidiary lobes increase with decreasing ». Therefore, a comparison of experimental BW
contrast figures with calculated constant-intensity contour diagrams should be done
with an appropriate choice of » inserted into the coefficients of (3.4).

4. Direetion of the BW Yeetor I

Equation (3.1) indicates that the strength of the term F(y) is a measure of the
strength of the contrast along the direction given by the angle ¢. This suggests the
following representation of the acute angle ¢; between g and [:

2z

= .[Fz(([) cos® (g — ¢)dgp = (4.1)

o

o

0
for ¢ = qpor ¢+ 7.

This definition means we rotate a test function cos® (¢ — ¢) (the square of the sim-
plest BW contrast figure) over the function F%(p) and take the angle ¢ where maximal
coverage of the two funetions is obtained as ¢;. Therefore, in (4.1) the angle ¢, is
essentially determined by the angular positions of the centres of gravity of the main
lohes, Subsidiary lobes, if they oceur, have only minor influence on the determinative
of ¢. This corresponds best to the experimental procedure by which ¢, is measured.

With (3.3) inserted into (4.1) we ohtain after some algebraic operations

rrlUJ1 - b 3) — fl3b1
({}' e bl. g ”1”3 T _bb

)]

tan 2q; =2 — (4.2)

The vectors I inserted in the constant-intensity contour diagrams in Fig. 2 were
calculated by means of this equation. Obviously, I coincides well with the black-white
vector one would determine experimentally.

In Fig. 3 we have plotted the ratio

=% (4.3)
G

as a function of ¢,, for pure edge loops with a,, and » as parameters. The curves
R = R(qm) are terminated near ¢,, = 75°. Around and bevond this value the BW

h =

a (1§

Fig. 3. The ratio R = ¢i/@gm for pure edge loops

as a function of gm. (a) am — 0°. r =1/4; (b)

am = 0°% » = 1(3; (¢)am = 0°. » = 2/5; (d)
am — 45°% r = 1/4; (e) R = 2/3, cf. (5.3)
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contrast figures become so “strongly distorted™ (cf. [3, 4]) that a BW vector I can no
longer be defined.

From the results the following conclusions can be drawn:

(i) The ratio R takes its maximum value for ¢,,, = 0 and decreases with increasing
@m- For a given value of ¢,, the ratio R increases with decreasing » and with increasing
a,m. However, for the range of the values of a,, and » considered, R approaches to
about the same value R = 0.67 -+ 0.01 for ¢,, approaching 70°.

(ii) Comparing pure edge loops and non-edge loops of the same direction of m it
is found that ¢y varies by less than 17 in the interval e X 45°. This holds for the two
extreme cases of non-edge loops as indicated by (2.6) and (2.7) (cf. also Fig. 1) and
also for intermediate cases. Thus the curves in Fig. 3 calculated originally for pure
edge loops are applicable also for non-edge loops.

2. Discussion

In the general case the orientation of a dislocation loop with respect to the diffrac-
tion vector ¢ and the direction of the electron beam is characterized by four param-
eters, e.g., by the angles ¢, a,, ¢, and a;. Therefore, a representative investigation
of the value of ¢; as a function of these four parameters and of Poisson’s ratio » is
fairly tedious if solely computer-calculated two-dimensional contrast figures are used.
However, the problem is easily solved by (4.2) derived in the present paper.

One striking result of our calculations is that the shape of the outer region of a BV
contrast figure and, hence, the angle ¢, is to a good degree determined only by the
parameters ¢,, and a,, which characterize the mean orientation vector m. This
facilitates the calculations further.

In order to understand the result reported in the preceding paragraph we refer to
the fact that in the first-order perturbation solution [4], which is applied in the present
paper, the displacement field of a small dislocation loop is represented by that of
elastic double forces located at the loop centre. This approximation, which has proved
to be very good for the outer region of a BW contrast figure, has the consequence that
the displacement field and, hence, the contrast figure remains unchanged if the direc-
tions of m and b are interchanged (“n-b syvmmetry”).})

Since the constant-intensity contour diagrams (CICD) are analyvtic functions of
the direction cosines of g and g and, hence, of ¢, it follows from the n—-b symmetry
that — comparing loops of the same direction of m — the CICD are independent of
& in linear approximation. This explains the weak influence of £ on the shapes of the
CICD and, in particular, on the angle ¢,.

Another analytical representation of ¢, was recently published by Ohr [16]. His
approach is based on the same first-order perturbation solution [4] as used in the
present paper but defines ¢, instead of (4.1) by

oF
—_(q) =1 for @ =i (5.1)
ey
Ohr’s expression is so far worked out only for » and b within the image plane and
for a particular value of » (presumably » = -} ). Further, it represents ¢; by an implicit

equation only, in contrast to (4.2) of the present paper. For practical application the
solution of such an implicit equation is inconvenient. Further, one may argue that

4) Recent remarks published in the literature (Holmes et al. [15], Eyre et al. [6]) which state
that this n—b symmetry is not fulfilled are not correct and are obviously based on a misunder-
standing of the arguments given in [4]. Of course. the n-b symmetry may not be valid for the
“inner region” of the contrast figure where the displacement field of a loop with finite diameter
must be used for the contrast caleulations,
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i Fig. 4. The systematic variation Agi defined in
s (5.2) as a function of gm
= ~
= =g 1 . | i \\
e a° 40° £0° a°
™

for the experimental determination of ¢; the directions of the maxima of the main
lobes, on which the definition of ¢y in (5.1) is based, are less significant than the centres
of gravity of the main lobes which are relevant for our representation, cf. Section 4.

Ohr’s paper is mainly concerned with ¢; as a function ¢, and ¢z. A variation of the
parameters &,,, & and v was not considered explicitly. With the formula given in
Section 4 this is easily done and we proceed as follows: We denote by +dg; the ex-
perimental uncertainty which is associated to ¢ as measured on a micrograph. As an
estimate we set dq; = 2°. In Section 4 it was stated that within this estimate the
variation of gy as a function of 2 can be neglected. With respect to a systematic varia-
tion of ¢y as a function of «,, and v we refer to the two extreme cases (¢) and (d) in
Fig. 3 ((e): N = 0° v = 0.4; (d): a,, = 45°, v = 0.25). Using these two cases we
define a maximum systematic variation Ag; by

Aql - qm(-h)(d) - —R(c)) . (5.2)

In Fig. 4 we have plotted Ag; as a function of ¢,,. The result is that Ag, < 23¢,
(=~ 4°) for ¢, = 30° and ¢, =< 65°. However, for g, around 45° the value of Ag,
may be slightly larger than 6°. This means that in this region of ¢,, the systematic
variation of ¢; may exceed the experimental uncertainty.

In [16] a “rule of thumhbh?”,

b)

rfl.' = ; (fm ] (53}
. was proposed which is represented in Fig. 3 as case (e) (dashed line). Obviously this
case is close to case (c) of Fig. 3. Consequently (5.3) represents in general a lower limit
of ¢y and is a reasonable approximation if only a moderate aceuracy in the calculation
of ¢, is attempted. If, however, the systematic uncertainties should be kept as small
as possible, then the explicit representation of ¢ in (4.2) may be a significantly better

approach than (5.3).

In a preceding paper (Foll and Wilkens [17]) which was concerned with the separate
determination of the directions of n and b of small dislocation loops in heavy-ion
damaged hexagonal cobalt we have shown that (4.2) gives reasonable results which
are self-consistent when the same kind of loops were imaged by different two-beam
diffraction vectors g and different crystallographie directions of the incident electron
beam,

6. Conclusions

Starting from an analytical expression for the constant-intensity contour diagrams
(CICD) of the black—white contrast figure of small dislocation loops the following
results were obtained:

(i) For the purpose of the CICD calculations a given non-edge loop (loop with shear
component) can be replaced in good approximation by a fictitious pure edge loop
with the loop normal n being equal to the mean orientation vector m of the respective
non-edge loop.

(if) A simple explicit formula is derived for the angle ¢; between the black—white
vector 1 and the diffraction vector ¢ which holds for dislocation loops without and
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with shear components. For the latter case it is shown that ¢, can be calculated in
very good approximation assuming a fictitious dislocation loop of pure edge type as
indicated in (i).

“Appendix

With equations (3.4) and (3.5) and [4] we obtain

ay = (1,,—3 == -'h') Nz — (% — —h') n,B, — (2 — 4r) n.j.,

-

3
ag = - (nzfz — nyBy) .

. 3
b = (—;4 — 41’) (ne8, + n,f3:), by = 5(“:[3, + nyfs) .
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