Solution to Exercise 5.2-2: Fresnel Equations and LEDs

Consider a simple light emitting diode schematically working as shown. All light is generated in a small volume as indicates an we assume that the semiconductor is fully transparent (which is not really true). The index of refraction of semiconductors is rather large; you may take it to be *n*=3

The simple question is: How much (in %) of the light generated is transmitted through the front (upper) surface?

First, it is important to make a drawing of the situation with respect to reflected and transmitted light:

- Light hitting the surface with an angle larger than α_{crit} will suffer total reflection and remains inside the semiconductor where it is eventually absorbed. Light emitted "downwards might get out of the semiconductor but is absorbed in the housing.
- It follows that only light paths' inside the cone with opening angle $2\alpha_{crit}$ will get out to where we need them. Steric analysis gives the surface of the spherical cap belonging to the $2\alpha_{crit}$ cone to $S_{SC}=2\pi r^2 \cdot (1 - \cos\alpha_{crit})$.
- The percentage of the light intensity l_{out} coming out relative to the light intensity l_{total} emitted into the full sphere with surface $4\pi r^2$ is thus

$$\frac{I_{\text{out}}}{I_{\text{total}}} = \frac{2\pi r^2 \cdot [1 - \cos(\alpha_{\text{crit}})]}{4\pi r^2} = \frac{1 - \cos(\alpha_{\text{crit}})}{2}$$

- Now we need to determine α_{crit}. Looking a the picture (and reversing the arrows) we write Snellius' law for total reflection as sinβ=n · sinα_{crit}=1. It follows that α_{crit}=n⁻¹ · arcsinβ.
 - For n=3 this gives us 19,47 °. Insertion gives lout/ltotal=0,0286
 - Only 2.86 % of the radiation produced is useful!!!!! We have a severe problem here!
- Suggest measures to improve that percentage.
- The *first* thing to do is to add a reflector at the bottom. That doubles the efficiency.

Second thing to do is to put a material with an \emph{n} between that of air and the semiconductor on top. This increases α_{crit} and the beneficial effect is clear from the picture .

Third thing to do is to shape you semiconductor in such a way that reflected light will get out after a second internal reflection. An inverted pyramid is a good shape for this (can you see why?).

Fourth....

You get, maybe, the idea, that **LEDs** with an overall efficiency (electrical energy in / light energy out) of **50** % are not made "just so" but contain a lot of engineering.

