Exercise 5.2.5 Rayleigh Scattering

1. Generate some numbers for scattering cross sections using the equations given.

Look, e.g., at "air" molecules including some water vapor or ozone as scatterers, and wave lengths from the **IR** to the **UV**.

2. Derive or justify the equation $I_{sc} = 1/n\sigma$. Show that for air we get I_{sc} (=) 160 · λ^4 if we give *I* in km and λ in µm.

Hint 1: Consider the particle to be a cube with σ being the area of a face. All light will be scattered if the total area of those cubes projected on a surface perpendicular to the light beam covers that area completely. λ_{sc} then is the length of a cube that contains enough particle to meet that condition. *Hint 2:* The volume of an air "molecule" can be estimated from the fact the *liquid* air has about the same density as water.

3. Generate some numbers for penetration depths in air. How thick does an ozone (**O**₃) layer with a density $n_{Oz} = 8 \text{ ml/m}^3$ have to be to absorb most of the incoming ultraviolet radiation (especially "UV-B"; $\lambda \approx 300 \text{ nm}$)

Link to the solution

7