
5.2.2 Fresnel Equations

Deriving the Fresnel Equations

Let's look at the TE mode (or _|_ mode) once more but now with the coordinate system needed for the equations
coming up.

The electrical field of the incoming beam thus writes as Ein = (0, Ein, 0), i.e. there is only an oscillating component
in y-direction. For the y-component Ein we can write Ein = Ein, 0exp[–i(kinzcosα + kinxsinα)], decomposing the
wave in an z and x component. We omitted the ωt phase factor because it will drop out anyway as soon as we go
to intensities.
Next we should write the corresponding equations for the reflected wave and the transmitted wave (requiring
changes in the k-vector).
Then we need the same set of equations for the magnetic field. For that we have to know how the magnetic field of
an electromagnetic wave can be derived from its electrical field. That means back to the Maxwell equations once
more or for a taste of that to sub-chapter 5.1.4.
After you did that you consider the boundary conditions as outlined before. Now you can start to derive the Fresnel
equations. You, not me. It's tedious but good exercise. Let's just look at the general way to proceed.

First we write down the continuity of the tangential or here parallel component of E (and always same thing for H in
principle). Since E has only components in y-directions we have for those components

Ein + Eref  =  Etr

While this looks a bit like the energy or intensity conservation equation from before, it is not! It is completely
different, in fact! Our E's here are field strengths and not energy!

So let's look at the energy flux in z-direction now, as given by the Poynting vector S. It must be continuous since energy
is neither genererated nor taken out at the interface as noted before. With the relation for energy from before and
dropping the index "0" for easier writing and reading, we obtain

ε1½ [(Ein)2 – (Eref )2] · cosα  =  ε2½ (Etr)2 · cosβ

This equation is simply the good old Snellius law in slight disguise (figure it out yourself, noting that Itr = Iin – Iref).

Dividing that equation by the one above it (remember: (Ein)2 – (Eref )2 = (Ein – Eref ) · (Ein + Eref ) gives

ε1½ [Ein – Eref ] · cosα  =  ε2½Etr · cosβ

With the good old relation (ε1/ε2)½ = n1/n2 = sinα/sinβ (with α and β as given in the old figure for simplicity) and
some shuffling of terms we finally obtain the Fresnel equations for the TE case .

Fresnel Equations TE case

Eref  =  Ein ·
sinβcosα – sinαcosβ

sinβcosα + sinαcosβ
 =  – Ein ·

sin(α – β)

sin(α + β)
       

Etr  =  Ein ·
2sinβcosα

sin(α + β)  
          

Advanced Materials B, part 1 - script - Page 1

http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_5/backbone/r5_2_1.html#te polarization
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_5/backbone/r5_1_4.html
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_5/backbone/r5_2_1.html#boundary conditions for e and h
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_5/backbone/r5_2_1.html#energy conservation in optics
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_5/backbone/r5_1_4.html#poynting vector
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_5/backbone/r5_2_1.html#_2
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_5/backbone/r5_2_1.html#_2
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_5/backbone/r5_2_1.html#_1


Going through the whole thing for the TM case (something I will not do here) gives the Fresnel equations for the TM
case

Fresnel equations TM case

Eref  =  Ein ·
sinβcosβ – sinαcosα

sinβcosβ + sinαcosα
 =  – Ein ·

tan(α – β)

tan(α + β)
       

Etr  =  Ein ·
2sinβcosα

sin(α + β) · cos(α – β) 
   

Relatively simple equations - but with a lot of power! Before we look at these equations a bit more closely, we modify
them by dividing everything by Ein, so we get relative numbers (in % if you like) for the field strength or the relative
intensities (E/Ein)2.

The resulting numbers for the relative field strengths we call the Fresnel coefficients. We have four Fresnel
coefficients: one each for reflection or transmittance, and that always separately for the TE and TM case.
 

Using the Fresnel Equations

A first extremely easy thing to do is to calculate the Fresnel coefficients for normal incidence (α = 0o). What we get for
the standard case of going from air (less dense medium, n = 1 to some appreciable n (denser medium) for both the TE
and TM case is

Eref

Ein

  =  – 
n – 1

n + 1
    

Iref

Iin

 
 =  





n – 1

n + 1





2

In other words, shining light straight on some glass with n = 2 means that almost 10 % of the intensity will be
reflected! This has immediate and dire consequences for optical instruments: you must provide some "anti-
reflection" coating - otherwise your intensity gets too low after the light passed through a few lenses..

We need to do a bit of exercise here:

Exercise 5.2.1
Fresnel coefficients

If we now speculate a little and consider metals as a material with very large dielectric constants and thus n, it is
clear that they will reflect almost 100 %.

Next we plot the Fresnel coefficients as a function of α, the angle of incidence. We need four figures with 8 graphs to
get the major points clear:

  Two figures showing the relative field strength (Eref/Ein), always with two separate graphs for the two basic
cases TE and TM.
1. Case 1: n1 > n2, i.e. going from the less dense to the optically denser material
2. Case 2: n1 < n2, i.e. going from the optically denser to the less dense material
Two figures showing the relative intensity  (Eref/Ein)2, always with separate graphs for the two basic cases
TE and TM; same cases as above

First we look at case 1 with n1 < n2, i.e. going from the less dense to the optically denser material

We take n1/n2 = ½ e.g. going from air with n = 1 into some glass with n = 2.

Here are the 4 graphs for this case; we look at the reflected beam.
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Case 1: Going from an optically less dense (n = 1) into a dense (n = 2) material

Electrical Field
E/E0

Reflected beam Intensity
(E/E0)2

Let's look at the field strength first What we see is

The numbers are negative for small α or almost perpendicular incidence. This means that we have a phase
shift of 180o between the incident and the reflected wave as outlined before.

1.

The relative amplitude of the transmitted beam is simply 1 - Eref/Ein. It becomes small for large α's.2.
In the TM case the field strength is exactly zero at a certain angle αB or "Brewster angle". This means that
there is no reflection for this polarization; all the light will be transmitted.

3.

So if the incident light consists of waves with arbitrary polarization, the component in TM direction will not be
reflected and that means that whatever will be reflected must be polarized in TE direction. We have a way to
polarize light!.

4.

For grazing incidence or large α's almost all of the light will be reflected in either case.5.
Looking a the intensities does not show anything new; you just see the "strength" of the reflected beam more clearly.

  
Now let's look at case 2 with n1 > n2, i.e. going from the more dense to the optically less dense material

We take n1/n2 = 2 e.g. going from some glass with n = 2 into air with n = 1.

Here are the 4 graphs for this case.

Case 2: Going from an optically dense (n = 2) into a less dense (n = 1) material

Electrical Field
E/E0

Reflected Beam Intensity
(E/E0)2

Let's look at the field strength first What we see is

The numbers are positive for small α or almost perpendicular incidence. This means that we have no phase
shift of 180o between the incident and the reflected wave as outlined before. Not that the reflected wave is the
one staying inside the optically dense material.

1.

The relative amplitude of the wave leaving the material is simply 1 - E/E0. It goes to zero rather quickly for
increasing α's

2.

In the TM case the field strength is exactly zero at a certain angle αB or "Brewster angle". This means that
there is no reflection for this polarization, all the light will be transmitted. Note that the value for the Brewster
angle here is different from the one in the case going from the less dense to the more dense material.

3.

So if the incident light consists of waves with arbitrary polarization, the component in TM direction will not be
reflected and that means that whatever will be reflected must be polarized in TE direction. We have a way to

4.
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polarize light inside a material!

4.

At some critical angle αcrit all light in either mode will be reflected. Beyond αcrit the Fresnel equations
have only complex number solution and that means there is no field strength or energy outside the material.
Light waves impinging at an angle >αcrit will be reflected right back into the material. αcrit is also known as
the angel of total reflection.

5.

That means that only light within a cone with opening angle < αcrit will be able to get of the material. It
should be clear to you that a serious problem concerning light emitting diodes, (LED) is encountered here.

6.

It's time for another exercise:

Exercise 5.2.2
Fresnel equations

Questionnaire
Multiple Choice questions to 5.2.2
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