Comparison of Dielectric and Magnetic Properties

Here is a quick and simple comparison of dielectric and magnetic definitions and laws

Dielectric Behavior		Magnetic Behavior		
Charge q			No equivalent	
Electrical field <u>E</u>			Magnetic field <u>H</u>	
Electrical displacement D			(Magnetic) Induction B	
Permittivity constant of vacuum ϵ_0			Permeability constant of vacuum μ ₀	
Relative dielectric constant of material ∈ _r			Relative permeability constant of material μ_r	
From Maxwell equations			From Maxwell equations	
Connection between dielectric flux density D , electrical field E , and relative dielectric constant ϵ_r	$D = \epsilon_0 \cdot \epsilon_r \cdot E$	$B = \mu_0 \cdot \mu_r \cdot H$	Connection between magnetic flux density B , magnetic field H , and relative (magnetic) permeability $\mu_{\mathbf{r}}$	
Formulation with electrical Polarization P in the material caused by the electrical field	$D=\epsilon_0\cdot E + P$	$B = \mu_0 \cdot H + J$	Formulation with <i>magnetic polarization J</i> in the material caused by the magnetic field	
Justified by theory of polarization mechanisms		Justified by theory of magnetization mechanisms		
Material "law" describing P as response of a material to a field E and defining the dielectric susceptibility χ Note exception: Ferroelectricity	$P = \epsilon_0 \cdot \chi \cdot E$	$J = \mu_0 \cdot \chi_{\text{mag}} \cdot H$	Material "law" describing <i>J</i> as response of a material to a field <i>H</i> and defining the <i>magnetic susceptibility</i> Xmag Note exception: <i>Ferromagnetism</i>	
Relation between χ and ε_{r}	$\chi = \epsilon_r - 1$	$\chi_{mag} = \mu_r - 1$	Relation between χ_{mag} and μ_{r}	
Definition of $\textbf{\textit{P}}$ as material property in terms of electrical dipole moment $\underline{\textbf{\textit{u}}}$ and density $\textbf{\textit{N}}_{\textbf{\textit{V}}}$	<i>P</i> = < <u>u</u> >⋅ N _V	<i>J</i> = < <u>m</u> >⋅ N _V	Definition of J as material property in terms of magnetic moments m and density N _V	
		$M = J/\mu_0$	Definition of magnetization M	
		$M = \chi_{\text{mag}} \cdot H$	Relations between M and H	

Next, let's compare mechanisms that lead to polarization

Dielectric Polarization		Magnetic Polarization	
Electronic polarization			Diamagnetism
Induce dipole moments by displacing electrons and nuclei. Weak for spherical atoms. Stronger for covalent bonds. Important for optics.	ε _r ≈ 1,0001 30	$\mu_r \approx 0,9999$	Induce precession of electrons. Always very weak and opposite to field. Not important.
Orientation polarization			Paramagnetism
Average small orientation of fluctuating existing dipoles. Only in <i>liquids</i> ; can be large. Not important.	∈ _r ≈ 2 100	$\mu_{r} \approx 1,0001$	Average small orientation of existing dipoles free to rotate in <i>solids</i> . Always small; not important. Extreme case: Ferromagnetism.

Ionic polarization			No direct counterpart
Net dipole moment from distribution of charges. Important.	∈ _r ≈ 2 100		
Ferroelectricity Natural dipoles defined by crystallography are lined up. Important.	∈ _r > 1000	μ _r > 1000	Ferromagnetism Natural magnetic moments are lined up in any directions (with crystal directions preferred). Extremely important.