
4.5. Summary: Magnetic Materials

The relative permeability µr of a material "somehow" describes the
interaction of magnetic (i.e. more or less all) materials and magnetic fields
H, e.g. vial the equations ⇒

B   =  µo · µr · H

L  = 
µ0 · µr · A · w2

l

n  = (εr· µr)½

B is the magnetic flux density or magnetic induction, sort of
replacing H in the Maxwell equations whenever materials are
encountered.
L is the inductivity of a linear solenoid, or )coil or inductor) with length
l, cross-sectional area A, and number of turns t, that is "filled" with a
magnetic material with µr.

 

n is still the index of refraction; a quantity that "somehow" describes
how electromagnetic fields with extremely high frequency interact with
matter.
For all practical purposes, however, µr = 1 for optical frequencies

 

     
Magnetic fields inside magnetic materials polarize the material, meaning
that the vector sum of magnetic dipoles inside the material is no longer
zero.

  

The decisive quantities are the magnetic dipole moment m, a vector,
and the magnetic Polarization J, a vector, too.

 
B  =  µo · H  +  J

J  = 
Σm

V

M  = 
J 

µo

Note: In contrast to dielectrics, we define an additional quantity, the
magnetization M by simply including dividing J by µo.

 

The magnetic dipoles to be polarized are either already present in the
material (e.g. in Fe, Ni or Co, or more generally, in all paramagnetic
materials, or are induced by the magnetic fields (e.g. in diamagnetic
materials).

 

The dimension of the magnetization M is [A/m]; i.e. the same as that
of the magnetic field.

 

     
The magnetic polarization J or the magnetization M are not given by some
magnetic surface charge, because ⇒. There is no such thing as a

magnetic monopole, the
(conceivable) counterpart of a
negative or positive electric

charge

     
The equivalent of "Ohm's law", linking current density to field
strength in conductors is the magnetic Polarization law: M  = (µr - 1) · H

   
M  := χmag · H

B  = µo · (H + M)

The decisive material parameter is χmag = (µr – 1) =
magnetic susceptibility.

 

The "classical" induction B and the magnetization are
linked as shown. In essence, M only considers what
happens in the material, while B looks at the total
effect: material plus the field that induces the
polarization.

 

    
Magnetic polarization mechanisms are formally similar to
dielectric polarization mechanisms, but the physics can be
entirely different.

Atomic mechanisms of
magnetization are not directly

analogous to the dielectric case

Magnetic moments originate from:   
The intrinsic magnetic dipole moments m of elementary
particles with spin is measured in units of the Bohr
magnetonmBohr.
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The intrinsic magnetic dipole moments m of elementary
particles with spin is measured in units of the Bohr
magnetonmBohr.

 

mBohr  =  
h · e  

4π · m*e
  =  9.27 · 10–24 Am2

me   =  
2 · h · e · s

4π · m*e
 =  2 · s · m Bohr  =  ± mBohr

 The magentic moment me of the electron is ⇒  

Electrons "orbiting" in an atom can be described as a
current running in a circle thus causing a magnetic
dipole moment; too

The total magentic moment of an atom in a crystal (or just
solid) is a (tricky to obtain) sum of all contributions from the
electrons, and their orbits (including bonding orbitals etc.), it
is either:

  

Zero - we then have a diamagmetic material .  
Magnetic field induces dipoles,

somewhat analogous to elctronic
polarization in dielectrics.

Always very weak effect (except
for superconductors)

Unimportant for technical
purposes

In the order of a few Bohr magnetons - we have a
essentially a paramagnetic material.

 
Magnetic field induces some order

to dipoles; strictly analogous to
"orientation polarizaiton" of

dielectrics.
Alsways very weak effect
Unimportant for technical

purposes

   
In some ferromagnetic materials spontaneous ordering of
magenetic moments occurs below the Curie (or Neél)
temperature. The important familiess are

Ferromagnetic materials ⇑⇑⇑⇑⇑⇑⇑
large µr, extremely important.
Ferrimagnetic materials ⇑⇓⇑⇓⇑⇓⇑
still large µr, very important.
Antiferromagnetic materials ⇑⇓⇑⇓⇑⇓⇑
µr ≈ 1, unimportant

 
Ferromagnetic materials:

Fe, Ni, Co, their alloys
"AlNiCo", Co5Sm, Co17Sm2,

"NdFeB"

    
There is characteristic temperatuer dependence of µr for all
cases

  

   

Dia- and Paramagentic propertis of
materials are of no consequence
whatsoever for products of electrical
engineering (or anything else!)

Normal diamagnetic materials: χdia ≈ – (10–5 - 10–7)
Superconductors (= ideal diamagnets): χSC = – 1
Paramagnetic materials: χpara ≈ +10–3

Only their common denominator of
being essentially "non-magnetic" is of
interest (for a submarine, e.g., you want
a non-magnetic steel)

 

For research tools, however, these
forms of magnitc behavious can be
highly interesting ("paramagentic
resonance")
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Diamagnetism can be understood in a
semiclassical (Bohr) model of the atoms as
the response of the current ascribed to
"circling" electrons to a changing magnetic
field via classical induction (∝ dH/dt).

The net effect is a precession of the
circling electron, i.e. the normal vector
of its orbit plane circles around on the
green cone. ⇒

 

The "Lenz rule" ascertains that
inductive effects oppose their source;
diamagnetism thus weakens the
magnetic field, χdia < 0 must apply.

 

 
Running through the equations gives a
result that predicts a very small effect. ⇒
A proper quantum mechanical treatment
does not change this very much.

χdia  =  – 
e2 · z · <r> 2

6 m*e
 · ρatom  ≈ – (10–5 - 10–7)

   
The formal treatment of paramagnetic
materuials is mathematically completely
identical to the case of orientation
polarization

 
W(ϕ) =  –   µ0 · m · H  =  –   µ0 · m · H · cos ϕ

Energy of magetic dipole in magnetic field

N[W(ϕ)]  =  c · exp –(W/kT)  =  c · exp  
m · µ0 · H · cos ϕ

kT
 = N(ϕ)

(Boltzmann) Distribution of dipoles on energy states

M  = N · m · L(β)
        

β  = 
µ0 · m · H

kT 

   

Resulitn Magnetization with Langevin function L(β) and argument β

 

The range of realistc β values (given by
largest H technically possible) is even
smaller than in the case of orientation
polarization. This allows tp approximate
L(β) by β/3; we obtain:

 

 

χpara  = 
N · m2 · μ0

3kT 

 

Insertig numbers we find that χpara is
indeed a number just slightly larger
than 0.

 

     

In ferromagnetic materials the magnetic moments of the atoms are
"correlated" or lined-up, i.e. they are all pointing in the same direction

The physical reason for this is a quantum-mechanical spin-spin
interaction that has no simple classical analogue.

 

However, exactly the same result - complete line-up - could be
obtained, if the magnetic moments would feel a strong magnetic field.

 

In the "mean field" approach or the "Weiss" approach to
ferromagnetism, we simply assume such a magnetic field HWeiss to
be the cause for the line-up of the magnetic moments. This allows to
treat ferromagnetism as a "special" case of paramagnetism, or more
generally, "orientation polarization".
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For the magnetization we obtain ⇒

J  =  N · m · µ0 · L(β)  =  N · m · µ0 · L 


m · µ0 · (H + w · J)

kT 




The term w · J describes the Weiss field
via Hloc = Hext + w · J; the Weiss factor
w is the decisive (and unknown)
parameter of this approach.

 

Unfortunately the resulting equation for J,
the quantity we are after, cannot be
analytically solved, i.e. written down in a
closed way.

 

    
Graphical solutions are easy, however ⇒  

From this, and with the usual approximation for the Langevin function
for small arguments, we get all the major ferromagnetic properties,
e.g.

Saturation field strength.
Curie temperature TC.

TC  = 
N · m 2 · µ02 · w

3k

Paramagnetic behavior above the Curie temperature.
Strength of spin-spin interaction via determining w from TC.

 

As it turns out, the Weiss field would have to be far stronger than what
is technically achievable - in other words, the spin-spin interaction can
be exceedingly strong!

 

 
In single crystals it must be expected that the alignments of the magnetic
moments of the atom has some preferred crystallographic direction, the
"easy" direction.

 
Easy directions:
Fe (bcc) <100>
Ni (fcc) <111>
Co (hcp) <001> (c-direction)

    
A single crystal of a ferromagnetic material with all magnetic moments
aligned in its easy direction would carry a high energy because:

 

It would have a large external magnetic field, carrying field energy.  

In order to reduce this field energy (and other energy terms not important
here), magnetic domains are formed ⇒. But the energy gained has to be
"payed for" by:

 

Energy of the domain walls = planar "defects" in the magnetization
structure. It follows: Many small domains —> optimal field reduction
—> large domain wall energy "price".

 

In polycrystals the easy direction changes from grain to grain, the
domain structure has to account for this.

In all ferromagnetic materials the effect of magnetostriction (elastic
deformation tied to direction of magnetization) induces elastic energy,
which has to be minimized by producing a optimal domain structure.

 

The domain structures observed thus follows simple principles but can be
fantastically complicated in reality ⇒.
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For ferromagnetic materials in an external magnetic field, energy can be
gained by increasing the total volume of domains with magnetization as
parallel as possible to the external field - at the expense of unfavorably
oriented domains.

 

Domain walls must move for this, but domain wall movement is
hindered by defects because of the elastic interaction of
magnetostriction with the strain field of defects.
Magnetization curves and hystereses curves result ⇒, the shape of
which can be tailored by "defect engineering".

 

Domain walls (mostly) come in two varieties:

Bloch walls, usually found in bulk materials.
Neél walls, usually found in thin films.

 

 

    
Depending on the shape of the hystereses curve (and described by the
values of the remanence MR and the coercivity HC, we distinguish hard
and soft magnets ⇒.

 

Tailoring the properties of the hystereses curve is important because
magnetic losses and the frequency behavior is also tied to the hystereses
and the mechanisms behind it.

 

Magnetic losses contain the (trivial) eddy current losses (proportional
to the conductivity and the square of the frequency) and the (not-so-
trivial) losses proportional to the area contained in the hystereses loop
times the frequency.

 

The latter loss mechanism simply occurs because it needs work to
move domain walls.

 

It also needs time to move domain walls, the frequency response of
ferromagnetic materials is therefore always rather bad - most materials will
not respond anymore at frequencies far below GHz.

 

     

Uses of ferromagnetic materials may be sorted according to:

Soft magnets; e.g. Fe - alloys  
Everything profiting from an
"iron core": Transformers,
Motors, Inductances, ...
Shielding magnetic fields.

Hard magnets; e.g. metal oxides or "strange" compounds.  
Permanent magnets for
loudspeakers, sensors, ...
Data storage (Magnetic
tape, Magnetic disc drives,
...

   
Even so we have essentially only Fe, Ni and Co (+ Cr, O and Mn in
compounds) to work with, innumerable magnetic materials with optimized
properties have been developed.

 
Strongest permanent magnets:
Sm2Co17
Nd2Fe14BNew complex materials (including "nano"materials) are needed and

developed all the time.
 

  
Data storage provides a large impetus to magnetic material development
and to employing new effects like "GMR"; giant magneto resistance; a
purely quantum mechanical effect.
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Questionaire

Multiple Choice questions to all of 4
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