Values for dielectric constants

Here are some values for dielectric constants:

 First, some of themore interesting materials with <u>electronic polarization</u> at work, at least to some noticeable extent.

Static \in_r for some semiconductors.			
Covalent bonding		Covalent and ionic bonding	
Electronic polarization is the main mechanism		Mix of electronic and ionic polarization	
С	5.7	ZnO	4.6
Si	12.0	ZnS	5.1
Ge	16.0	ZnSe	5.8
SiC	6.7	CdS	5.2
GaP	8.4	CdSe	7.0
GaAs	10.9	ВеО	3.0
InP	9.6	MgO	3.0

The numbers are from "Solid State Physics" of Ashcroft / Mermin (an advanced text book).

Next, some numbers for <u>ionic crystals</u>. Besides the static $\epsilon_{\mathbf{r}}(\omega = \mathbf{0})$, the value $\epsilon_{\mathbf{r}}(\omega = \infty)$ for very high frequencies is also given. This means that after ionic polarization "dies out", there is still some electronic polarization left.

Static and high-frequency ∈ _r for some ionic crystals			
Crystal	$\in_{\mathbf{r}}(\omega=0)$	∈ r(ω = ∞)	
LiF	9.01	1.96	
NaF	5.05	1.74	
KF	5.46	1.85	
LiCI	11.95	2.78	
NaCl	5.90	2.34	
KCI	4.84	2.19	
LiBr	13.25	3.17	
NaBr	6.28	2.59	
Lil	16.85	3.80	
Nal	7.28	2.93	
TI			

The numbers are from "Solid State Physics" of Ashcroft / Mermin (an advanced text book).