3.4.2 Summary to: Dynamic Properties - Dielectric Losses

The frequency dependent current density j flowing through a dielectric is easily obtained. \Rightarrow

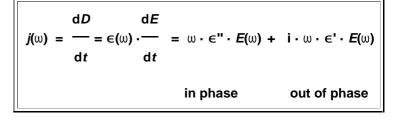
- The in-phase part generates active power and thus heats up the dielectric, the out-of-phase part just produces reactive power
- The power losses caused by a dielectric are thus directly proportional to the imaginary component of the dielectric function

$$L_{A} = \begin{array}{c} \text{power turned} \\ \text{into heat} \end{array} = \omega \cdot |\epsilon''| \cdot E^{2}$$

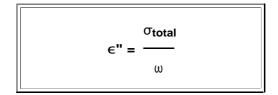
The relation between active and reactive power is called "tangens Delta" ($tg(\delta)$); this is clear by looking at the usual pointer diagram of the current

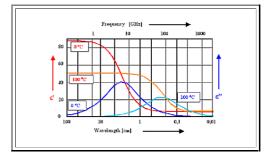
<i>L</i> _A — := tgδ=	/ _A — =	e "
L _R	l _R	€'

- The pointer diagram for an *ideal* dielectric $\sigma(\omega = 0) = 0$ can always be obtained form an (ideal) resistor $R(\omega)$ in parallel to an (ideal) capacitor $C(\omega)$.
- **R**(ω) expresses the apparent conductivity $\sigma_{DK}(\omega)$ of the dielectric, it follows that


$$\sigma_{\mathsf{DK}}(\omega) = \omega \cdot \epsilon''(\omega)$$

For a *real* dielectric with a non-vanishing conductivity at zero (or small) frequencies, we now just add another resistor in parallel. This allows to express *all* conductivity effects of a real dielectric in the imaginary part of its (usually measured) dielectric function via


We have no all materials covered with respect to their dielectric behavior - in principle even metals, but then resorting to a dielectric function would be overkill.


A good example for using the dielectric function is "dirty" water with a not-too-small (ionic) conductivity, commonly encountered in food.

- The polarization mechanism is orientation polarization, we expect large imaginary parts of the dielectric function in the GHz region.
- It follows that food can be heated by microwave (ovens)!

