Some Properties of Ag Based Contact Materials The following table lists just a few **Ag** based alloys that are obtained by a sintering process for specific contact uses The melting point is always around 960 °C | Alloy | ρ
[μΩ cm] | Brinell Hardness
[kp/mm ²] | Uses | |-------------------------------|----------------------|---|---------------------------------| | Ag (60 90) %
Ni (40 10) % | 2,82,0 | 50 130 | Low Voltage circuit breakers | | Ag 88%
CdO 12% | 2,4 | 60 70 | Circuit breakers | | Ag 95%
SnO ₂ 5% | 2,5 | 5060 | High load relays | | Ag 98 %
C 2 % | 2,5 | 35 45 | Welding resistant contacts | | Ag (10 30) %
W (90 70) % | 5,0 4,0 | 105 230 | Low voltage high power switches | - The next table lists just a few Ag based alloys that are obtained by melting the constituents - The melting point varies from (800 1030) °C | Alloy | ρμΩ cm | Brinell Hardness
(kp/mm²) | Uses | |--|---------------|------------------------------|--------------------------------------| | Ag 85 %
Cd 15 % | 4,8 | 4078 | Welding resistant DC contacts | | Ag (7297) %
Cu (283) % | 1,8 2,1 | 40140 | Heavy duty relay contacts | | Ag 95%
Ni 5% | 1,9 | 50 | Contacts in communication technology | | Ag (7050) %
Pd (3050) % | 15,632 | 70190 | Contacts in communication technology | | Ag 20 %
Au 80 % | 10 | 3790 | Fine contacts | | Cu ca. 95 %
Co (2,5) %
Be (13) % | 3,510 | 100400 | Brushes, pantographs | ¹⁾ $S = Siemens = 1/\Omega$