2.4.4 Summary to: Conductors - Special Applications

Thermionic emission provides electron beams. The electron beam current (density) is given by the *Richardson equation*:

- A_{theo} = 120 A · cm⁻² · K⁻² for free electron gas model A_{exp} ≈ (20 - 160) A · cm⁻² · K⁻²
- E_A = work function \approx (2 >6) eV
- Materials of choice: **W**, **LaB**₆ single crystal

High field effects (tunneling, barrier lowering) allow large currents at low T from small (nm) size emitter

There are several thermoelectric effects for metal junctions; always encountered in non-equilibrium.

Seebeck effect:

Thermovoltage develops if a metal A-metal B junction is at a temperature different form the "rest", i.e. if there is a temperature gradeient

Peltier effect:

Electrical current *I* through a metal - metal (or metal - semiconductor) junction induces a temperature gradient \propto *I*, i.e. one of the junction may "cool down".

Questionaire

All Multiple Choice questions to 2.4

 $j = A \cdot T^2 \cdot \exp - \frac{E_A}{kT}$

Needs UHV!

Essential for measuring (high) temperatures with a "thermoelement" Future use for efficient conversion of heat to electricity ???

Used for electrical cooling of (relatively small) devices. Only big effect if electrical heating ($\propto l^2$) is small.