2.3. General Applications

2.3.1 Normal Conductors

- A world without *conductors* is even harder to imagine than a world without *semiconductors*. Examples for applications include
 - High-voltage free-air power transmission lines.
 - High voltage wires for trains (getting "scratched" all the time).
 - In-house wiring.
 - · Low-voltage wiring (car systems).
 - · High current wiring (machines).
 - System on-board wiring.
 - Bond wires for IC's (diameter < 30μm).
 - · Metallization on chips.
 - · Screening electrical or magnetic fields.
 - · Avoidance of electrostatic charging.
 - · Electrodes for batteries, chemical reactors etc.
 - · Antennas.
 - Each use has special requirements which should be met by the conducting material.
 - Some examples for requirements
 - Money (Use of Au, Ag, Pt etc. may be critical).
 - Chemistry (general stability and reactivity; esentiall excludes Na, K, Hg etc. for most applications; corrosion properties, ...).
 - Mechanical properties (Pure metals are often too soft, but alloys have higher resistivity).
 - Thermal properties (temperature coefficient; no metal usable beyond ca. 1000 K).
 - Compatibility with other materials (contact corrosion, solderability, thermoelectric and thermomechanical properties, general chip compatibility, ...).
 - Compatibility with production technologies (e.g. thin film deposition methods, wire making (try this with a brittle superconductor!),...).
- Whole families of conductors, fine-tuned for a specific applications, were developed; below are some examples.
 - Cu based conductors

There are many precisely specified **Cu**-based conductors for all kind of specific applications, <u>examples</u> are given in the link.

AI based conductors

This family is primarily used for high-voltage free-air cables (in combination with a steel core) because of best fitting in terms of conductivity - price - mech. **strength** - corrosion requirements; cf. the **illustration** in the link.

- Others
- In one IC you may find the following conductor materials:
 - Poly crystalline highly doped Si.
 - Silicides; i.e. Si metal compounds like NiSi₂.
 - AI with ≤ 1% of Si and Cu if the chip was made before, say, 2000.
 - Cu with some additions instead of AI if the chip was made after 2000.
 - W.
 - TiN.

because one material simply does not meet the specific requirements for conductor on chips.