2.2.4 Summary to: Conductors - Definitions and General Properties

- What counts are the specific quantities:
 - Conductivity σ (or the specific resistivity $\rho = 1/\sigma$.
 - · current density i.
 - (Electrical) field strength <u>E</u>.
 - The basic equation for σ is:
 n = concentration of carriers,
 μ = mobility of carriers.
 - Ohm's law states:
 It is valid for metals, but not for all materials.
- σ (of conductors / metals) obeys (more or less) several rules; all understandable by looking at n and particularly μ .
 - Matthiesen rule:
 Reason: Scattering of electrons at defects (including phonons) decreases μ.
 - "ρ(7) rule":
 about 0,04 % increase in resistivity per K
 Reason: Scattering of electrons at phonons decreases μ.
 - Nordheim's rule:
 Reason: Scattering of electrons at **B** atoms decreases **μ**.
- Major consequence: You can't beat the conductivity of pure Ag by "tricks" like alloying or by using other materials (Not considering superconductors).
- Non-metallic conductors are extremely important.
 - Transparent conductors (TCO's) ("ITO", typically oxides).
 - lonic conductors (liquid and solid).
 - Conductors for high temperature applications; corrosive environments, ..
 (Graphite, Silicides, Nitrides, ...).
 - Organic conductors (and semiconductors).
- Numbers to know (order of magnitude accuracy sufficient)

[
$$\rho$$
] = Ω m
[σ] = (Ω m)⁻¹ = S/m; S = "Siemens"

$$\sigma = |q| \cdot n \cdot \mu$$

$$i = \sigma \cdot \underline{E}$$

$$\rho = \rho_{\text{Lattice}}(T) + \rho_{\text{defect}}(N)$$

$$\Delta \rho = \alpha_{\rho} \cdot \rho \cdot \Delta T \approx \frac{0.4\%}{\circ c}$$

$$\rho \approx \rho_A + \text{const.} \cdot [B]$$

No flat panels displays = no notebooks etc. without **ITO**!

Batteries, fuel cells, sensors, ...

Example: **MoSi₂** for heating elements in corrosive environments (dishwasher!).

The future High-Tech key materials?

 ρ (decent metals) about 2 μΩcm. ρ (technical semiconductors) around 1 Ωcm. ρ (insulators) > 1 GΩcm.

Questionaire

All Multiple Choice questions to 2.1