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All we need is love, but all we get is work

 

1. Introduction

 
1.1 General Remarks

  
 What follows is no longer relevant as far as lecture courses are concerned.

From here to the end of chapter 4 the content is more or less identical to the same chapters in the Hyperscript
"Electronic Materials".

  
  Some Important Links

For a detailed table of contents use the link

The organization, timetable, etc. for the running term can be found in the link.

If you like to read prefaces, just click.

For book recommendations: Consult the list of books

What is Special About this Course

The lecture course "Electronic Materials" has a somewhat special status for two reasons:

1. It is far to short to really cover the topic appropriately, but yet, it overlaps with other courses. The reason for this
is the mix of students who are required to take this course (see below).

2. It had a special format for the exercise part 1).

Unfortunately, in the fall term of 2004, this exercise format had to be abandoned for various reasons in favor of the
more classical format.

Relation to Other Courses

This graduate course "Electronic Materials" (in German: Werkstoffe der Elektrotechnik und Sensorik I) is a required
course for

Study Course

1. All Materials Science Diploma students

2. All Master of Mat. Science and Engineering students.

3. All Electrical Engineering Diploma students.

4. All "Wirtschafts-Ingenieur ET&IT" Diploma students.

Exactly what "required" means depends on your study course - look up your "Prüfungsordnung". Essentially the
following rules obtain:

The first three study courses must pass the written examination, the last one must obtain the "Schein" for the
exercise class
Even if you are not required to obtain the exercise "Schein" or the 1.5 ECTS "Credit Points", it is highly
recommended to participate in the exercise class since it is a preparation for the examination!

It interacts with several other courses in the materials science and electrical engineering curriculum. There is
considerable overlap with the following courses
Silicon Technology I + II (In German: Halbleitertechnologie I + II)

This course is required for Matwiss students in the Diploma track and electrical engineers specializing in solid state
electronics.
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It contains everything taught in the Si-technology section of "Electronic Materials". However, since the bulk of the
electrical engineers will not be exposed to Si-technology anywhere else, "Electronic Materials" will cover the
subject briefly. For all others, this part can be seen as an introduction to "Silicon Technology I + II"

Solid State Physics for Engineers II

This course is required for Matwiss students in the Diploma and Master track and electrical engineers specializing
in solid state electronics.
Dielectrics and magnetic materials will be covered in depth and from a more theoretical background. Again, the
relevant chapters in "Electronic Materials" may be seen as introduction by those students enrolling in "Solid State
II"; for the others it is an essential component of electrical engineering.

The course has a very special relation to "Introduction to Materials Science I + II", which is a required course for all
engineering (undergraduate) students.

"Electronic Materials" can be seen as part III of this series, because it covers the two major subjects left open in
"Introduction to Materials Science I + II": dielectrics and magnetic materials. Moreover, the Si-technology part
begins where the semiconductor part of "Introduction to Materials Science I + II" ends.
However, "Electronic Materials" is fully self-contained and can be taken by itself, provided the basic requirements
are met.
For details of the contents of "Introduction to "Materials Science I + II" refer to the Hyperscripts (in German)
MaWi I
MaWi II

Sensors I (In German: "Werkstoffe der Elektrotechnik und Sensorik II")

Required for all Materials Science students in the diploma track.
(Used to be required for all electrical engineers).
Continues "Electronic Materials" with emphasize on sensor applications and ionic materials, but is self-contained
and can be taken by itself.

"Electronic Materials" will include a brief chapter concerning ionic materials for those who do not take "Sensors I"

Semiconductors

This course overlaps a little bit with "Electronic Materials", but essentially continues where Electronic Materials
ends for Semiconductors.

Background Knowledge

Mathematics

The course does not employ a lot of math. You should be familiar, however, with complex numbers, Fourier
transforms and differential equations.

General Physics and Chemistry

A general undergraduate level of basic physics should be sufficient. You should be comfortable with units and
conversion between units.

General Materials Science

You must know basic crystallography, quantum theory and thermodynamics.
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1.1.2 How to use the Hyperscript

  
You'll figure it out. Otherwise use this link.
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1.1.3 Electronic Materials and Products

So what are "Electronic Materials"? Ask Google and you get an answer!

  
Progress in Electrical Engineering was always dependent on progress in materials. For quite some time, electrical
engineering meant electromechanical engineering, and electrical products were made from "trivial" materials, as seen
from a modern point of view. What was needed were cables, insulators, ferromagnetic sheet metal for transformers and
generators, and a lot of metal for the general mechanics. A few applications centered around some mysterious materials
- out of that grew electronics and electronic materials. But even then there were key materials:

Cu wires of all kinds. Not so trivial - how do you make a insulated but still flexible wire?

Insulating materials - plastics didn't quite exist yet. Mica was one of the key materials - there were mines for it!

Graphite and tungsten were important, whenever things got hot, like the filament in the light bulb or in a vacuum
tube.
The "tube of Braun" - the "Braunsche Röhre" as it was known in Europe - the first cathode ray tube (CRT) in other
words - needed complicated glass work and some ZnS as electroluminescent material
Strange compounds like "phosphor bronze" were developed for contacts.

And Selenium (Se) was important for rectifiers, although nobody quite understood how it worked.

The essential break through in the thirties was the vacuum tube; with it came electronics: Rectifiers, amplifiers, radio,
black-and white TV, colour TV. It's not that long ago, but obviously long enough for some not to remember!
The next break-through was called transistor; it happened in 1947. Integrated circuits followed around 1970, and since
then we witness exponential growth with growth rates in the complexity of electronics (at constant prices) of up to 40% a
year!

A good (german) book covering this development in some detail is Hans Queissers "Kristallne Krisen".

 

1.2.2 Electronic Materials and Electronic Products

Electronic Products
  

Electronic Materials are what you find inside the components making up electronic products. They consist of some stuff
that you cannot easily exchange with something else - not even in principle - without losing the function.

What you can change easily for example, is the material for the box, the housing. Use Al instead of plastic or vice
versa for your video recorder - it would still work, needing at most some minor adjustments.
You also may change (in principle) the metal for real wires. Using Au, Ag, or Al instead of - let's say - Cu, makes
little difference for the function.
But exchange any material in a "chip" (i.e. in an integrated circuit) with something else (even allowing for minor
adjustments) - and that definitely will be the end of your product.

Let's look at some typical products or product groups that contain electronic materials:

Electronics in general (Computer, TV, Radio, Radar, Microwave, ...).

Flat panel displays (FPD).

Micromechanics and Microsystems (MEMS).

Solar cells.

Lasers (in particular semiconductor Lasers).

Batteries, Accumulators; energy storage systems in general.

Sensors, in particular solid state sensors, that convert whatever they sense directly into a current or a voltage.

Fuel Cells.

Magnetic Memories.
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Looking at Components
  

Consider, e.g., a laptop or notebook in more detail. If you take it apart, you find the "high tech" stuff:

Any number of chips, i.e. integrated circuits.

Some quartz oscillators.

A hard disc, i.e. a magnetic memory for the bulk memory.

A reading head for the hard disc that uses the "giant magnetoresistance effect"

A CD ROM, i.e. an optical memory and a semiconductor Laser

A flat-panel display (FPD) using "liqiud crystals", whichis pretty big as a single component, but cannot be
subdivided in smaller pieces.

But there is also "low tech" - or so it seems:

Capacitors and inductors.

Switches, connectors, the keyboard as a unit.

Insulation.

Mechanical stuff like the disk drive, but also the housing.

Some components betray their key material in their name ("quartz" oscillator) or by common knowledge (who, besides
some so-called intellectuals, does not know that the word "chip" is almost a synonym for Silicon?), but for most
components we have to look deeper - we must open them up (which will almost always destroy them). What do we find?
 

Electronic Materials
  

Lets open up a chip. We find

Packaging material - either some polymer blend or ceramics.

A "chip" mostly consisting of Si, but interlaced in an intricate pattern with other materials like P, B, As, SiO2,
Si3N4, MoSi2, W, TiN, Al, Cu....
A lead frame - the little pins sticking out of the package - made of some metal alloys.

Tiny wires connecting the leads to the chip or some pretty sophisticated stuff doing this job.

Now open up the FPD. You will find many materials, the most suspicious beyond what we already found in chips are:

Liquid crystals, some strange liquid stuff.

Amorphous Si.

Indium tin oxide ITO, a transparent electrode.

Plastic foils acting as polarizers.

A plastic (or glass) front and end plate.

Now lets look at the Laser coming with the CD drive :

You find a complex mix of GaAs, GaAlAs, some other elements, as well as wires and packaging materials.

And all of this is quite different from what you find in the Si chips!

Soon you would find GaN in your Laser diode - and the capacity of your CD memory will quadruple!

We could continue this, but by now you got the idea:

Progress in Electronic and Communication Technology is
driven by

Progress in Material Science
(and almost nothing else)
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2.1 Ohm's Law and Theory of Charge Transport

Note: Chapter 2.1 here is a repetition of chapter 2.1 from "Einführung in die Materialwissenschaft II". Since it contains
the scientific essentials about Ohm's law it is included in this Hyperscript

2.1.1. Ohms Law and Materials Properties

In this subchapter we will give an outline of how to progress from the simple version
of Ohms "Law", which is a kind of "electrical" definition for a black box, to a
formulation of the same law from a materials point of view employing (almost) first
principles.

 

In other words: The electrical engineering point of view is: If a "black box"
exhibits a linear relation between the (dc) current I flowing through it and the
voltage U applied to it, it is an ohmic resistor.

 

That is illustrated in the picture: As long as the voltage-current characteristic you
measure between two terminals of the black box is linear, the black box is called
an (ohmic) resistor).

 

Neither the slope of the I-U-characteristics matters, nor the material content of
the box.

 

TheMaterials Science point of view is quite different. Taken to the extreme, it is:  

Tell me what kind of material is in the black box, and I tell you:

If it really is an ohmic resistor, i.e. if the current relates linearly to the
voltage for reasonable voltages and both polarities.

1.

What its (specific) resistance will be, including its temperature
dependence.

2.

And everything else of interest.3.

 

In what follows we will see, what we have to do for this approach. We will proceed in
3 steps

 

In the first two steps, contained in this sub-chapter we simply reformulate Ohms law in physical quantities that are
related to material properties. In other words, we look at the properties of the moving charges that produce an
electrical current. But we only define the necessary quantities; we do not calculate their numerical values.
In the third step - which is the content of many chapters - we will find ways to actually calculate the important
quantities, in particular for semiconductors. As it turns out, this is not just difficult with classical physics, but simply
impossible. We will need a good dose of quantum mechanics and statistical thermodynamics to get results.

    

1. Step: Move to specific quantities

First we switch from current I and voltage U to the current density j and the field strength E, which are not only
independent of the (uninteresting) size and shape of the body, but, since they are vectors, carry much more information
about the system.

This is easily seen in the schematic drawing below.

 
Current density j and field strength E may depend on the coordinates,
because U and I depend on the coordinates, e.g. in the way
schematically shown in the picture to the left. However, for a
homogeneous material with constant cross section, we may write
 

j  = 
I

F

 
with F = cross sectional area. The direction of the vector j would be
parallel to the normal vector f of the reference area considered: it also
may differ locally. So in full splendor we must write

Advanced Materials B, part 1 - script - Page 8

http://www.tf.uni-kiel.de/matwis/amat/mw2_ge/kap_2/backbone/r2_1_1.html
http://www.tf.uni-kiel.de/matwis/amat/mw1_ge/kap_3/basics/m3_1_1.html


 

j(x,y,z) =
I(x,y,z)

F
· f

    

The "global" field strength is

E  = 
U

l

With l = length of the body. If we want the local field strength E(x,y,z) as a vector, we have, in principle, to solve the
Poisson equation

∇ · E(x,y,z)  =  
ρ(x,y,z)

εε0

With ρ(x,y,z) = charge density. For a homogeneous materials with constant cross section, however, E is parallel
to f and constant everywhere, again which is clear without calculation.

So. to make things easy, for a homogenous material of length l with constant cross-sectional area F, the field strength
E and the current density j do not depend on position - they have the same numerical value everywhere.

For this case we can now write down Ohms law with the new quantities and obtain

j · F  =  I  =  
1

R
 · U  = 

1

R
· E · l

j  = 
l

F · R
 · E

The fraction l/ F · R obviously (think about it!) has the same numerical value for any homogeneous cube (or
homogeneous whatever) of a given material; it is, of course, the specific conductivity σ

σ  = 
1

ρ
 = 

l

F · R

and ρ is the specific resistivity. In words: A 1 cm3 cube of homogeneous material having the specific resistivity ρ
has the resistance R = (ρ · l)/F
Of course, we will never mix up the specific resistivity ρ with the charge density ρ or general densities ρ, because
we know from the context what is meant!
The specific resistivity obtained in this way is necessarily identical to what you would define as specific resistivity
by looking at some rectangular body with cross-sectional area F and length l.
The specific conductivity has the dimension [σ] = Ω–1cm–1, the dimension of the specific resistivity is [ρ] = Ωcm.
The latter is more prominent and you should at least have a feeling for representative numbers by remembering
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ρ (metal)  ≈ 2 µΩcm
   

ρ (semicoductor)  ≈ 1 Ωcm
   

ρ (insulator)  ≈ 1 GΩcm

Restricting ourselves to isotropic and homogenoeus materials, restricts σ and ρ to being scalars with the same
numerical value everywhere, and Ohms law now can be formulated for any material with weird shapes and being quite
inhomogeneous; we "simply" have

j  = σ  · E

Ohms law in this vector form is now valid at any point of a body, since we do not have to make assumptions about the
shape of the body.

Take an arbitrarily shaped body with current flowing through it, cut out a little cube (with your "mathematical" knife)
at the coordinates (x,y,z) without changing the flow of current, and you must find that the local current density and
the local field strength obey the equation given above locally.

j(x,y,z)  = σ  · E(x,y,z)

Of course, obtaining the external current I flowing for the external voltage U now needs summing up the
contributions of all the little cubes, i.e. integration over the whole volume, which may not be an easy thing to do.

Still, we have now a much more powerful version of Ohms law! But we should now harbor a certain suspicion:

There is no good reason why j must always be parallel to E. This means that for the most general case σ is not a
scalar quantity, but a tensor; σ = σij.
(There is no good way to write tensors in html; we use the ij index to indicate tensor properties.
Ohms law then writes

jx = σxx · Ex + σxy · Ey + σxz · Ez

jy = σyx · Ex + σyy · Ey + σyz · Ez

jz = σzx · Ex + σzy · Ey + σzz · Ez

For anisotropic inhomogeneous materials you have to take the tensor, and its components will all depend on the
coordinates - that is the most general version of Ohms law.

Note that this is not so general as to be meaningless: We still have the basic property of Ohms law: The local
current density is directly proportional to the local field strength (and not, for example, to exp– [const. · E] ).
We have a new thing. however: The current density vector j points no longer in the direction of the electrical field E.
In other words: The vector response of an anisotropic material to some disturbance or "driving force" still produces a
vector but with a direction and amplitude that is determined by a tensor that describes the material properties. While
this used to be a somewhat exotic material behavior for practitioners or engineers in the past, it is quickly becoming
mainstream now., So you might as well acquaint yourself with tensor stuff right now. This link gives a first overview.

Our goal now is to find a relation that allows to calculate σij for a given material (or material composite); i.e. we are
looking for

σij = σij(material, temperature, pressure, defects... )

 

2. Step: Describe σij in Terms of the Carrier Properties
  

Electrical current needs mobile charged "things" or carriers that are mobile. Note that we do not automatically assume
that the charged "things" are always electrons. Anything charged and mobile will do.
What we want to do now is to express σij in terms of the properties of the carriers present in the material under
investigation.

To do this, we will express an electrical current as a "mechanical" stream or current of (charged) particles, and
compare the result we get with Ohms law.

First, lets define an electrical current in a wire in terms of the carriers flowing through that wire. There are three crucial
points to consider
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1. The external electrical current as measured in an Ampèremeter is the result of the net current flow through any cross
section of an (uniform) wire.

In other words, the measured current is proportional to the difference of the number of carriers of the same charge
sign moving from the left to right through a given cross sectional area minus the number of carriers moving from the
right to the left.
In short: the net current is the difference of two partial currents flowing in opposite directions:

Do not take this point as something simple! We will encounter cases where we have to sum up 8 partial currents to
arrive at the externally flowing current, so keep this in mind!

2. In summing up the individual current contributions, make sure the signs are correct. The rule is simple:

The electrical current is (for historical reasons) defined as flowing from + to –. For a particle current this means:

In words: A technical current I flowing from + to – may be obtained by negatively charged carriers flowing in the
opposite direction (from – to +), by positively charged carriers flowing in the same direction, or from both kinds of
carriers flowing at the same time in the proper directions.
The particle currents of differently charged particles then must be added! Conversely, if negatively charged carriers
flow in the same directions as positively charged carriers, the value of the partial current flowing in the "wrong"
direction must be subtracted to obtain the external current.

3. The flow of particles through a reference surface as symbolized by one of arrows above, say the arrow in the +x -
direction, must be seen as an average over the x -component of the velocity of the individual particles in the wire.

Instead of one arrow, we must consider as many arrows as there are particles and take their average. A more
detailed picture of a wire at a given instant thus looks like this

An instant later it looks entirely different in detail, but exactly the same on average!

If we want to obtain the net flow of particles through the wire (which is obviously proportional to the net current flow),
we could take the average of the velocity components <v+x> pointing in the +x direction (to the right) on the left
hand side, and subtract from this the average <v–x> of the velocity components pointing in the –x direction (to the
left) on the right hand side.
We call this difference in velocities the drift velocity vDof the ensemble of carriers.

If there is no driving force, e.g. an electrical field, the velocity vectors are randomly distributed and <v+x> = <v–x>;
the drift velocity and thus net current is zero as it should be.

Average properties of ensembles can be a bit tricky. Lets look at some properties by considering the analogy to a
localized swarm of summer flies "circling" around like crazy, so that the ensemble looks like a small cloud of smoke.
This link provides for a more detailed treatment about averaging vectors.

First we notice that while the individual fly moves around quite fast, its vector velocity vi averaged over time t, <vi>t,
must be zero as long as the swarm as an ensemble doesn't move.
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In other words, the flies, on average, move just as often to the left as to the right, etc. The net current produced by
all flies at any given instance or by one individual fly after sufficient time is obviously zero for any reference surface.

In real life, however, the fly swarm "cloud" often moves slowly around - it has a finite drift velocity which must be just the
difference between the average movement in drift direction minus the average movement in the opposite direction.

The drift velocity thus can be identified as the proper average that gives the net current through a reference plane
perpendicular to the direction of the drift velocity.
This drift velocity is usually much smaller than the average magnitude of the velocity <v> of the individual flies. Its
value is the difference of two large numbers - the average velocity of the individual flies in the drift direction minus the
average velocity of the individual flies in the direction opposite to the drift direction.

Since we are only interested in the drift velocity of the ensemble of flies (or in our case, carriers) we may now simplify
our picture as follows:

We now equate the current density with the particle flux density by the basic law of current flow:

Current density j = Number N of particles carrying the charge q flowing through the cross sectional area F (with the
normal vector f and |f| = 1) during the time interval t, or

j  = 
q · N

F · t
 · f

In scalar notation, because the direction of the current flow is clear, we have

j  = 
q · N

F · t

The problem with this formula is N, the number of carriers flowing through the cross section F every second.

N is not a basic property of the material; we certainly would much prefer the carrier density n = N/V of carriers. The
problem now is that we have to chose the volume V = F · l in such a way that it contains just the right number N of
carriers.
Since the cross section F is given, this means that we have to pick the length l in such a way, that all carriers
contained in that length of material will have moved across the internal interface after 1 second.
This is easy! The trick is to give l just that particular length that allows every carrier in the defined portion of the wire
to reach the reference plane, i.e.

l  =  vD · t

This makes sure that all carriers contained in this length, will have reached F after the time t has passed, and thus
all carriers contained in the volume V = F· vD · t will contribute to the current density. We can now write the current
equation as follows:

j  = 
q · N

F · t
 = 

q · n · V

F · t
 = 

q · n · F · l

F · t
 = 

q · n · F · vD · t

F · t

This was shown in excessive detail because now we have the fundamental law of electrical conductivity (in obvious
vector form)
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j  = q · n · vD

This is a very general equation relating a particle current (density) via its drift velocity to an electrical current (density) via
the charge q carried by the particles.

Note that it does not matter at all, why an ensemble of charged particles moves on average. You do not need an
electrical field as driving force anymore. If a concentration gradient induces a particle flow via diffusion, you have an
electrical current too, if the particles are charged.
Note also that electrical current flow without an electrical field as primary driving force as outlined above is not some
odd special case, but at the root of most electronic devices that are more sophisticated than a simple resistor.
Of course, if you have different particles, with different density drift velocity and charge, you simply sum up the
individual contributions as pointed out above.

All we have to do now is to compare our equation from above to Ohms law:

j  = q · n · vD  :=  σ · E

We then obtain

σ  = 
q · n · vD

E
 := constant

If Ohms law holds, σ must be a constant, and this implies by necessity

vD

E
 = constant

And this is a simple, but far reaching equation saying something about the driving force of electrical currents (=
electrical field strength E) and the drift velocity of the particles in the material.
What this means is that if  vD/E = const. holds for any (reasonable) field E, the material will show ohmic behavior.
We have a first condition for ohmic behavior expressed in terms of material properties.
If, however, vD/E is constant (in time) for a given field, but with a value that depends on E, we have σ = σ(E); the
behavior will not be ohmic!

The requirement vD/E = const. for any electrical field thus requires a drift velocity in field direction for the particle, which
is directly proportional to E. This leads to a simple conclusion:

This is actually a rather strange result! A charged particle in an electrical field experiences a constant force, and
Newtons first law tells us that this will induce a constant accelerations, i.e. its velocity should increase all the time!
Its velocity therefore would grow to infinity - if there wouldn't be some kind of friction.
We thus conclude that there must exist some mechanism that acts like a frictional force on all accelerated
particles, and that this frictional force in the case of ohmic behavior must be in a form where the average drift
velocity obtained is proportional to the driving force.

Since vD/E = constant must obtain for all (ohmic) materials under investigation, we may give it a name:

vD

E
 =  µ  = Mobility  = Material constant

The mobility µ of the carriers has the unit
[µ] = (m/s)/(V/m) = m2/V · s.
The mobility µ (Deutsch: Beweglichkeit) then is a material constant; it is determined by the "friction", i.e. the
processes that determine the average velocity for carriers in different materials subjected to the same force q · E.
Friction, as we (should) know, is a rather unspecified term, but always describing energy transfer from some
moving body to the environment.
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Thinking ahead a little bit, we might realize that µ is a basic material constant even in the absence of electrical
fields. Since it is tied to the "friction" a moving carrier experiences in its environment - the material under
consideration - it simply expresses how fast carriers give up surplus energy to the lattice; and it must not matter
how they got the surplus energy. It is therefore no suprise if µ pops up in all kinds of relations, e.g. in the famous
Einstein - Smoluchowski equation linking diffusion coefficients and mobility of particles.

We now can write down the most general form of Ohms law applying to all materials meeting the two requirements: n =
const. and µ = const. everywhere. It is expressed completely in particle (= material) properties.

σ  = q · n · µ

The task is now to calculate n and µ from first priciples, i.e. from only knowing what atoms we are dealing with in
what kind of structure (e.g. crystal + crystal defects)
This is a rather formidable task since σ varies over a extremely wide range, cf. a short table with some relevant
numbers.

In order to get acquainted with the new entity "mobility", we do a little exercise:

Exercise 2.1-1
Derive and dicuss numbers for µ

Since we like to give σ as a positive number, we always take only the magnitude of the charge q carried by a particle.

However, if we keep the sign, e.g. write σ = – e · n · µe for electrons carrying the charge q = – e; e = elementary
charge, we now have an indication if the particle current and the electrical current have the same direction (σ > 0) or
opposite directions σ < 0) as in the case of electrons.
But it is entirely a matter of taste if you like to schlepp along the signs all the time, or if you like to fill 'em in at the
end.

Everything more detailed then this is no longer universal but specific for certain materials. The remaining task is to
calculate n and µ for given materials (or groups of materials).

This is not too difficult for simple materials like metals, where we know that there is one (or a few) free electrons per
atom in the sample - so we know n to a sufficient approximation. Only µ needs to be determined.
This is fairly easily done with classical physics; the results, however, are flawed beyond repair: They just do not
match the observations and the unavoidable conclusion is that classical physics must not be applied when looking
at the behavior of electrons in simple metal crystals or in any other structure - we will show this in the immediately
following subchapter 2.1.3.

We obviously need to resort to quantum theory and solve the Schrödinger equation for the problem.

This, surprisingly, is also fairly easy in a simple approximation. The math is not too complicated; the really difficult
part is to figure out what the (mathematical) solutions actually mean. This will occupy us for quite some time.

Questionaire
Multiple Choice Questions to 2.1.1
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2.1.2 Ohms Law and Classical Physics

In this subchapter we will look at the classical treatment of the movement of electrons inside a material in an electrical
field.

In the preceding subchapter we obtained the most basic formulation of Ohms law, linking the specific conductivity to
two fundamental material parameters:

σ  = q · n · µ

For a homogeneous and isotropic material (e.g. polycrystalline metals or single crystal of cubic semiconductors), the
concentration of carriers n and their mobility µ have the same value everywhere in the material, and the specific
conductivity σ is a scalar.

This is boring, however. So let's look at useful complications:

In general terms, we may have more than one kind of carrier (this is the common situation in semiconductors) and n and
µ could be functions of the temperature T, the local field strength Eloc resulting from an applied external voltage, the
detailed structure of the material (e.g. the defects in the lattice), and so on.

We will see that these complications are the essence of advanced electronic materials (especially semiconductors),
but in order to make life easy we first will restrict ourselves to the special class of ohmic materials.
We have seen before that this requires n and µ to be independent of the local field strength. However, we still may
have a temperature dependence of σ; even commercial ohmic resistors, after all, do show a more or less
pronounced temperature dependence - their resistance increases roughly linearly with T.

In short, we are treating metals, characterized by a constant density of one kind of carriers (= electrons) in the order of 1
...3 electrons per atom in the metal.
 

Basic Equations and the Nature of the "Frictional Force"

We consider the electrons in the metal to be "free", i.e. they can move freely in any direction - the atoms of the lattice
thus by definition do not impede their movement

The (local) electrical field E then exerts a force F = – e · Eloc on any given electron and thus accelerates the
electrons in the field direction (more precisely, opposite to the field direction because the field vector points from +
to – whereas the electron moves from – to +).
In the fly swarm analogy, the electrical field would correspond to a steady airflow - some wind - that moves the
swarm about with constant drift velocity.

Now, if a single electron with the (constant) mass m and momentum p is subjected to a force F, the equation of motion
from basic mechanics is

F  = 
dp

dt
 = 

m · dv

dt

Note that p does not have to be zero when the field is switched on.

If this would be all, the velocity of a given electron would acquire an ever increasing component in field direction and
eventually approach infinity. This is obviously not possible, so we have to bring in a mechanism that destroys an
unlimited increase in v.

In classical mechanics this is done by introducing a frictional force Ffr that is proportional to the velocity.

Ffr  =  – kfr · v

with kfr being some friction constant. But this, while mathematically sufficient, is devoid of any physical meaning
with regard to the moving electrons.
There is no "friction" on an atomic scale! Think about it! Where should a friction force come from? An electron feels
only forces from two kinds of fields - electromagnetic and gravitational (neglecting strange stuff from particle
physics). So we have to look for another approach.

What friction does to big classical bodies is to dissipate ordered kinetic energy of the moving body to the environment.
Any ordered movement gets slowed down to zero (surplus) speed, and the environment gets somewhat hotter instead,
i.e. unordered movement has increased.

Advanced Materials B, part 1 - script - Page 15

http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_2/basics/b2_1_1.html


This is called energy dissipation, and that is what we need: Mechanisms that take kinetic energy away from an
electron and "give" it to the crystal at large. The science behind that is called (Statistical) Thermodynamics - we
have encounterd it before.

The best way to think about this, is to assume that the electron, flying along with increasing velocity, will hit something
else along its way every now and then; it has a collision with something else, it will be scattered at something else.

This collision or scattering event will change its momentum, i.e. the magnitude and the direction of v, and thus also
its kinetic energy Ekin, which is always given by

Ekin  = 
m · v2

2
  = 

p · v

2

In other words, we consider collisions with something else, i.e. other particles (including "pseudo" particles), where the
total energy and momentum of all the particles is preserved, but the individual particle looses its "memory" with respect
to its velocity before the collision, and starts with a new momentum after every collision.
What are the "partners" for collisions of an electron, or put in standard language, what are the scattering
mechanisms? There are several possibilities:

Other electrons. While this happens, it is not the important process in most cases. It also does not decrease the
energy contained in the electron movement - the losses of some electron are the gains of others.
Defects, e.g. foreign atoms, point defects or dislocations. This is a more important scattering mechanism and
moreover a mechanism where the electron can transfer its surplus energy (obtained through acceleration in the
electrical field) to the lattice, which means that the material heats up
Phonons, i.e. "quantized" lattice vibrations traveling through the crystal. This is the most important scattering
mechanism.

Now that is a bit strange. While we (hopefully) have no problem imagining a crystal lattice with all atoms vibrating
merrily, there is no immediate reason to consider these vibrations as being localized (whatever this means) and particle-
like.

You are right - but nevertheless: The lattice vibrations indeed are best described by a bunch of particle-like phonons
careening through the crystal.
This follows from a quantum mechanical treatment of lattice vibrations. Then it can be shown that these vibrations,
which contain the thermal energy of the crystal, are quantized and show typical properties of (quantum) particles:
They have a momentum, and an energy given by hν (h = Plancks constant, ν = frequency of the vibration).

Phonons are a first example of "pseudo" particles; but there is no more "pseudo" to phonons than there is to photons.

We will not go into more details here. All we need to know is that a hot crystal has more phonons and more
energetic phonons than a cold crystal, and treating the interaction of an electron with the lattice vibration as a
collision with a phonon gives not only correct results, it is the only way to get results at all.

At this point comes a crucial insight: It would be far from the truth to assume that only accelerated electrons scatter;
scattering happens all the time to all the electrons moving randomly about because they all have some thermal energy.
Generally, scattering is the mechanism to achieve thermal equilibrium and equidistribution of the energy of the crystal.

If electrons are accelerated in an electrical field and thus gain energy in excess of thermal equilibrium, scattering is
the way to transfer this surplus energy to the lattice which then will heat up. If the crystal is heated up from the
outside, scattering is the mechanism to turn heat energy contained in lattice vibrations to kinetic energy of the
electrons.
Again: Even without an electrical field, scattering is the mechanism to transfer thermal energy from the lattice to the
electrons (and back). Generally, scattering is the mechanism to achieve thermal equilibrium and equidistribution of
the energy of the crystal.
Our free electrons in metals behave very much like a gas in a closed container. They careen around with some
average velocity that depends on the energy contained in the electron gas, which is - in classical terms- a direct
function of the temperature.
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Averaging over Random Scattering Events
  

Lets look at some figures illustrating the scattering processes.

 
Shown here is the magnitude of the velocity v ±x of an electron in +x and
–x direction without an external field. The electron moves with constant
velocity until it is scattered, then it continues with some new velocity.
The scattering processes, though unpredictable at single events, must
lead to the averages of the velocity, which is characteristic for the material
and its conditions.
The plural in "averages" is intentional: there are different averages of the
velocity
Whereas <v> = 0, <v> has a finite value; this is also true for <vx> = – <v
–x> . Consult the "fly swarm modul" if you are unsure about this.

 
From classical thermodynamics we know that the (classical) electron gas in thermal equilibrium with the environment
contains the energy Ekin = (1/2)kT per particle and degree of freedom, with k = Boltzmanns constant and T = absolute
temperature. The three degrees of freedom are the velocities in x-, y- and z-direction, so we must have

Ekin,x  = ½ · m · <vx>2  =  ½ · kT

<vx>  = 




kT

m





1/2

For the other directions we have exactly the same relations, of course. For the total energy we obtain

Ekin   =  
m · <vx2>

2  
  + 

m · <vy2>

2  
   + 

m · <vz2>

2  
  = 

m · <v2>

2  
 =  

m · (v0)2

2  
  = 

3kT

2  

with v0 = <v>. v0 is thus the average velocity of a carrier careening around in a crystal.

At this point you should stop a moment and think about just how fast those electrons will be careening around at room
temperature (300K) without plugging numbers in the equation. Got a feeling for it? Probably not. So look at the
exercise question (and the solution) further down!.
Now you should stop another moment and become very aware of the fact that this equation is from purely classical
physics. It is absolutely true for classical particles - which electrons are actually not. Electrons obey the Pauli
principle, i.e. they behave about as non-classical behavior as it is possible. This should make you feel a bit
uncomfortable. Maybe the equation from above is not correct for electrons then? Indeed - it isn't. Why, we will see
later; also how we can "repair" the situation!

Now lets turn on an electrical field. It will accelerate the electrons between the collisions. Their velocity in field direction
then increases linearly from whatever value it had right after a collision to some larger value right before the next
collision.

In our diagram from above this looks like this:

 
Here we have an electrical field that accelerates electrons in in x-
direction (and "brakes" in –x direction). Between collisions, the
electron gains velocity in +x-direction at a constant rate (= identical
slope).
The average velocity in +x directions, <v+x>, is now larger than in –x
direction, <v–x>.
However, beware of the pitfalls of schematic drawings: For real
electrons the difference is very small as we shall see shortly; the slope
in the drawing is very exaggerated.
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The drift velocity is contained in the difference <v+x> – <v–x>; it is completely described by the velocity gain
between collisions. For obtaining a value, we may neglect the instantaneous velocity right after a scattering event
because they average to zero anyway and just plot the velocity gain in a simplified picture; always starting from zero
after a collision.
 

The picture now looks quite simple; but remember that it contains
some not so simple averaging.

At this point it is time to define a very meaningful new average quantity:

 The mean time between collisions, or more conventional, the mean
time τ for reaching the drift velocity v in the simplified diagram. We also
call τ the mean scattering time or just scattering time for short.

 
This is most easily illustrated by simplifying the scattering diagram once more: We simply use just one time - the
average - for the time that elapses between scattering events and obtain:

 
This is the standard diagram illustrating the scattering of electrons in a
crystal usually found in text books; the definition of the scattering time
τ is included
It is highly idealized, if not to say just wrong if you compare it to the
correct picture above. Of course, the average velocity of both pictures
will give the same value, but that's like saying that the average speed
va of all real cars driving around in a city is the same as the average
speed of ideal model cars all going at va all the time.
Note that τ is only half  of the average time between collisions.

 
So, while this diagram is not wrong, it is a highly abstract rendering of the underlying processes obtained after several
averaging procedures. From this diagram only, no conclusion whatsoever can be drawn as to the average velocities of
the electrons without the electrical field!
 

New Material Parameters and Classical Conductivity

With the scattering concept, we now have two new (closely related) material parameters:

The mean (scattering) time τ between two collisions as defined before, and a directly related quantity:

The mean free path l between collisions; i.e. the distance travelled by an electron (on average) before it collides
with something else and changes its momentum. We have

l  =  2τ · (v0 + vD)

Note that v0 enters the defining equation for l, and that we have to take twice the scattering time τ because it only
refers to half the time between collisions!

After we have come to this point, we now can go on: Using τ as a new parameter, we can rewrite Newtons equation from
above:

dv

dt
  = 

∆v

∆t
  =  

vD

τ

It is possible to equate the differential quotient with the difference quotient, because the velocity change is
constant. From this we obtain
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vD

τ
  =   – 

E · e

m

    

⇒  vD   =  – 
E · e · τ

m

Inserting this equation for vD in the old definition of the current density  j = – n · e · vD  and invoking the general version
of Ohms law,  j = σ · E, yields

j  = 
n · e2 · τ

m
· E   : =  σ · E

This gives us the final result

σ  =  
n · e2 · τ

m

This is the classical formula for the conductivity of a classical "electron gas" material; i.e. metals. The conductivity
contains the density n of the free electrons and their mean scattering time τ as material parameters.

We have a good idea about n, but we do not yet know τclass, the mean classical scattering time for classical
electrons. However, since we know the order of magnitude for the conductivity of metals, we may turn the equation
around and use it to calculate the order of magnitude of τclass. If you do the exercise farther down, you will see that
the result is:

τclass  =  
σ · m

n · e2
 ≈ (10– 13 .... 10– 15) sec

"Obviously" (as stated in many text books), this is a value that is  far too small and thus the classical approach
must be wrong. But is it really too small? How can you tell without knowing a lot more about electrons in metals?
Let's face it: you can't !!. So let's look at the mean free path l instead. We have

l  =  2 · τ · (v0 + vD)

and

(v0)2   = 
3kT

m

 
The last equation gives us a value v0 ≈ 104 m/s at room temperature! Now we need vD, and this we can estimate
from the equation given above to vD = – E · τ · e/m ≈ 1 mm/sec, if we use the value for τ dictated by the measured
conductivities. It is much smaller than v0 and can be safely neglected in calculating l.

We thus can rewrite the equation for the conductivity and obtain
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σ  = 
n · e2 · l

2 · m · (v0 + vD)

Knowing σ from experiments, but not l, allows to determine l. The smallest possible mean free path lmin between
collisions (for vD = 0) thus is

lmin   = 
2 · m · v0 · σ

n · e2
 =  2 · v0 · τ  ≈ (10–1 – 101) nm

And this is certainly too small!.

But before we discuss these results, let's see if they are actually true by doing an exercise:

Exercise 2.1-2
Derive numbers for v0, τ, vD, and l

Now to the important question: Why is a mean free path in the order of the size of an atom too small?

Well, think about the scattering mechanisms. The distance between lattice defects is certainly much larger, and a
phonon itself is "larger", too.
Moreover, consider what happens at temperatures below room temperatures: l would become even smaller since v0
decreases - somehow this makes no sense.

It does not pay to spend more time on this. Whichever way you look at it, whatever tricky devices you introduce to make
the approximations better (and physicists have tried very hard!), you will not be able to solve the problem: The mean free
paths are never even coming close to what they need to be, and the conclusion which we will reach - maybe reluctantly,
but unavoidably - must be:

There is no way to describe conductivity (in
metals)

with classical physics!

   

Scattering and Mobility
  

Somewhere on the way, we have also indirectly found that the mobility µ as defined before is just another way to look
at scattering mechanisms. Let's see why.

All we have to do is to compare the equation for the conductivity from above with the master equation σ = q · n · µ.

This gives us immediately

µ  = 
e · τ

m
 

   

µ  ≈ 
e · l

2 · m · v0

In other words:
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The decisive material property determining the
mobility µ is the average time between scattering

events or the mean free path between those
events.

The mobility µ thus is a basic material property, well-defined even without electrical fields, and just another way to
express the scattering processes taken place by a number.

In the equations above slumbers an extremely important aspect of semicoductor technology.

In all electronic devices carriers have to travel some distance before a signal can be produced. A MOS transistor, for
example, switches currents on or off between its "Source" and "Drain" terminal depending on what voltage is applied
to its "Gate". Source and drain are separated by some distance lSD, and the "Drain" only "feels" the "on" state after
the time it takes the carriers to run the distacne lSD.
How long does that take if the voltage between Source and Drain is USD?

Easy. If we know the mobility µ of the carriers, we now their (average) velocity vSD in the source-drain region, which
by definition is vSD = µ · USD/lSD.
The traveling time tSD between source and drain for obvious reasons defines roughly the maximum frequency fmax
the transistor can hand, we have tSD = lSD / vSD or

tSD  = 
lSD2

µ · USD

 ≈ 
1 

fmax

The maximum frequency of a MOS transistor thus is directly proportional to the mobiltiy of the carriers in the
material it is made from (always provided there are no other limiting factors). And since we used a rather general
argument, we should not be surprised that pretty much the same relation is also true for most electronic devices,
not just MOS transistors.
This is a momentous statement: We linked a prime material parameter, the material constant µ, to one of the most
important parameters of electronic circuits. We would like µ to be as large as possible, of course, and now we know
what to do about it!

A simple exercise is in order to see the power of this knowlegde:

Exercise 2.1-3
What does it take to build a 4 GHz

microprocessor?

Questionaire
Multiple Choice Questions to 2.1.2
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2.1.3 The Hall Effect

This subchapter introduces two important topics: The Hall effect as an important observation in materials science and
at the same time another irrefutable proof that classical physics just can't hack it when it comes to electrons in
crystals.

The Hall effect describes what happens to current flowing through a conducting material - a metal, a semiconductor
- if it is exposed to a magnetic field B.
We will look at this in classical terms; again we will encounter a fundamental problem.

The standard geometry for doing an experiment in its most simple form is as follows:

 

Relevant vectors; the current
is carried by electrons

A magnetic field B is employed perpendicular to the current direction
j, as a consequence a potential difference (i.e. a voltage) develops
at right angles to both vectors.

  In other words: A Hall voltage UHall will be measured perpendicular
to B and j.

In yet other words: An electrical field  EHall develops in y-direction

  That is already the essence of the Hall effect.

 

It is relatively easy to calculate the magnitude of the Hall voltage UHall that is induced by the magnetic field B.

First we note that we must also have an electrical field E parallel to j because it is the driving force for the current.

Second, we know that a magnetic field at right angles to a current causes a force on the moving carriers, the so-
called Lorentz force FL, that is given by

FL  = q · (vD × B)

We have to take the drift velocity vD of the carriers, because the other velocities (and the forces caused by these
components) cancel to zero on average. The vector product assures that FL is perpendicular to vD and B.
Note that instead the usual word "electron" the neutral term carrier is used, because in principle an electrical current
could also be carried by charged particles other then electrons, e.g. positively charged ions. Remember a simple
but important picture given before!

For the geometry above, the Lorentz force FL has only a component in y - direction and we can use a scalar equation
for it. Fy is given by

Fy  = – q · vD · Bz

We have to be a bit careful, however: We know that the force is in y-direction, but we do longer know the sign. It
changes if either q, vD, or Bz changes direction and we have to be aware of that.

With vD = µ · E and µ = mobility of the carriers, we obtain a rather simple equation for the force

Fy  = – q · µ · Ex · Bz

It is important to note that for a fixed current density jx the direction of the Lorentz force is independent of the sign of
the charge carriers (the sign of the charge and the sign of the drift velocity just cancel each other).

This means that the current of carriers will be deflected from a straight line in y-direction. In other words, there is a
component of the velocity in y-direction and the surfaces perpendicular to the y-direction will become charged as soon
as the current (or the magnetic field) is switched on. The flow-lines of the carriers will look like this:
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The charging of the surfaces is unavoidable, because some of the carriers eventually will end up at the surface
where they are "stuck".
Notice that the sign of the charge for a given surface depends on the sign of the charge of the carriers. Negatively
charged electrons (e- in the picture) end up on the surface opposite to positively charged carriers (called h+ in the
picture).
Notice, too, that the direction of the force Fy is the same for both types of carriers, simply because both q and vD
change signs in the force formula

The surface charge then induces an electrical field Ey in y-direction which opposes the Lorentz force; it tries to move the
carriers back.

In equilibrium, the Lorentz force Fy and the force from the electrical field Ey in y-direction (which is of course simply
q · Ey) must be equal with opposite signs. We obtain

q · Ey  = – q · µ · Ex · Bz
   

Ey  = – µ · Ex · Bz

The Hall voltage UHall now is simply the field in y-direction multiplied by the dimension dy in y-direction.

It is clear then that the (easily measured) Hall voltage is a direct measure of the mobility µ of the carriers involved,
and that its sign or polarity will change if the sign of the charges flowing changes.

It is customary to define a Hall coefficient RHall for a given material.

This can be done in different, but equivalent ways. In the link we look at a definition that is particularly suited for
measurements. Here we use the following definition:

RHall  = 
Ey

Bz · jx

In other words, we expect that the Hall voltage Ey · dy (with dy = dimension in y-direction) is proportional to the
current(density) j and the magnetic field strength B, which are, after all, the main experimental parameters (besides the
trivial dimensions of the specimen):

Ey  = RHall · Bz · jx

The Hall coefficient is a material parameter, indeed, because we will get different numbers for RHall if we do experiments
with identical magnetic fields and current densities, but different materials. The Hall coefficient, as mentioned before,
has interesting properties:

RHall will change its sign, if the sign of the carriers is changed because then Ey changes its sign, too. It thus
indicates in the most unambiguous way imaginable if positive or negative charges carry the current.
RHall allows to obtain the mobility µ of the carriers, too, as we will see immediately

RHall is easily calculated: Using the equation for Ey from above, and the basic equation  jx = σ · Ex, we obtain for
negatively charged carriers:

RHall   =  –  
µ · Ex · Bz

σ · Ex · Bz

 =  –  
µ

σ

Measurements of the Hall coefficient of materials with a known conductivity thus give us directly the mobility of the
carriers responsible for the conductance.

The – sign above is obtained for electrons, i.e. negative charges.

If positively charged carriers would be involved, the Hall constant would be positive.
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Note that while it is not always easy to measure the numerical value of the Hall voltage and thus of R with good
precision, it is the easiest thing in the world to measure the polarity of a voltage.

Lets look at a few experimental data:

Material Li Cu Ag Au Al Be In
Semiconductors
(e.g. Si, Ge,
GaAs, InP,...)

R
(× 10–24)
cgs units

–1,89 –0,6 –1,0 –0,8 +1,136 +2,7 +1,774

positive or
negative values,
depending on
"doping"

Comments:
1. the positive values for the metals were measured under somewhat special
conditions (low temperatures; single crystals with special orientations), for other
conditions negative values can be obtained, too.
2. The units are not important in the case, but multiplying with  9 · 1013 yields the
value in m3/Coulomb

Whichever way we look at this, one conclusion is unavoidable:

In certain materials including metals, the particles carrying the electrical current are positively charged under certain
conditions. And this is positively not possible in a classical model that knows only negatively charged electrons as
carriers of electrical current in solids!

Again we are forced to conclude:

There is no way to describe conductivity in metals and
semiconductors with classical physics!

Questionaire
Multiple Choice Fragen zu 2.1.3
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2.1.4 Summary to: Conductors - Definitions and General Properties

What counts are the specific quantities:

Conductivity σ (or the specific resistivity ρ = 1/ σ.
current density j.
(Electrical) field strength · E.

σ  =  |q| · n · µ

 
j  =   σ · E

   
σ (of conductors / metals) obeys (more or less) several rules; all
understandable by looking at n and particularly µ.

 

Matthiesen rule:
Reason: Scattering of electrons at defects (including phonons)
decreases µ.

 
ρ =  ρLattice(T) + ρdefect(N)

"ρ(T) rule":
about 0,04 % increase in resistivity per K
Reason: Scattering of electrons at phonons decreases µ.

 

∆ρ  =  αρ · ρ · ∆Τ  ≈ 
0,4%

oC

Nordheim's rule:
Reason: Scattering of electrons at B atoms decreases µ.

 
ρ  ≈   ρA + const. · [B]

     
Major consequence: You can't beat the conductivity of pure Ag by "tricks"
like alloying or by using other materials
(Not considering superconductors).

    
Non-metallic conductors are extremely important.   

Transparent conductors (TCO's)
("ITO", typically oxides).

 
No flat panels displays =

no notebooks etc. without ITO!

Ionic conductors (liquid and solid).  
Batteries, fuel cells, sensors, ...

Conductors for high temperature applications; corrosive environments,
..
(Graphite, Silicides, Nitrides, ...).

 
Example: MoSi2 for heating

elements in corrosive
environments (dishwasher!).

Organic conductors (and semiconductors).  
The future High-Tech key

materials?

     
Numbers to know (order of magnitude accuracy sufficient)  

ρ(decent metals) about 2 μΩcm.
ρ(technical semiconductors)

around 1 Ωcm.
ρ(insulators) > 1 GΩcm.
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Questionaire

All Multiple Choice questions to 2.1
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2.2 Materials and Conductivity

2.2.1 Metals

A few words before you start:

Conductors in general are a bit boring, whereas conductors in particular applications are often hot topics (take the
recent switch from Al to Cu in chip technology, for example).
There is a large number of highly optimized materials which are used as conductors nowadays. Just enumerating
them is tiresome and not very interesting. Still, some knowledge of this issue is a must for materials scientists in
the context of electronic materials.
As far as "theory" goes, there is either not much that goes beyond a basic knowledge of solid state physics (which,
it is assumed, you already have), or very involved special theory (e.g. for superconductors or conducting polymers) -
for which there is no time.

In conclusion, we will only touch the issue, trying to present all major facets of the topic. In particular, the long list of
applications for conductors (much longer than you probably would imagine) will be covered. This chapter, however, will
be brief and mostly lists topics and key words.
 

The Basics
  

The essential parameters of interest for conductors are:

1. Specific resistivity ρ or specific conductivity σ = 1/ρ.

The defining "master" equation is

σ  =  |q| · n · µ

With q = magnitude of the charge of the current carrying particles; n = concentration of current carrying particles
(usually electrons in conductors) ; µ = mobility of the current carrying particles.
The units are

[ρ]   = Ωm  
    

[σ]   = (Ωm)–1   = S/m 

Note that S = "Siemens" = 1/Ω = A/V is a bit old fashioned, but still in use. Note, too, that while the SI standard
units call for the meter (m), you will find many values given in Ωcm.
A homogeneous material with a constant cross-sectional area F and a length l thus has a resistance of R = (ρ · l)/F

R  =  
ρ · l

F

Or, in other words, a cube with 1 cm length has a resistance R given in Ω that is numerically equal to ist specific
resistance ρ given in Ωcm.

If electrons are carrying the current, we have q = – e = elementary charge = 1.602 · 10–19 C.

For units, conversions, and so on consult the link!

2. Ohm's law. Ohm's law (which was not a "law", but an empirical observation) formulated for the specific quantities
writes
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j  =  σ · E

With j = current density (a vector); E = electrical field strength (a vector); σ = specific conductivity, in general a
tensor of 2nd rank and, most important, not a function of the field strength E if not specifically noted. In other words,
if the specific conductivity of a material is a constant, i.e. a fixed number with respect to E, the material obeys
Ohm's law.
Ohm's law thus means that the E - j characteristics or the easily measured voltage - current characteristics are
always straight lines through the origin! Within reasonable values of E, or U, of course.

If you have any problem with these equations, perhaps because you feel Ohm's law should read R = U/I, or if you are not
sure about the the meaning of the basic quantities, as e.g., mobility, you have a problem. Turn to the required reading
module and other modules accessible from there.

More about Ohm's law and the failure of classical physics in explaining the conductivity of metals can be found in a
second required reading module. Add to this the required reading module for averaging vector quantities and you are
ready for this chapter and others to come.

A remark to the mathematical notation: HTML possibilities are limited and it is difficult to adhere to all rules of
notation. In case of doubt, clarity and easy reading will have preference to formal correctness. This means:

Whenever sensible, cursive symbols will be used for variables. It is not sensible, e.g., to use cursive letters for the
velocity v, because the cursive v is easily mixed up with the Greek nu ν.
All equations and the quantities used in equations are always bold - this greatly improves readability. However, it
leaves little room for symbolizing vectors by bold lettering, and since underlining is cumbersome and not
particularly helpful, we simply will mostly not use special notation for vectors. If you are able to understand this
lecture course at all, you will know the vector (or tensor) quantities anyway.
There are not enough letters in the alphabet to give every physical quantity an unambiguous symbol. One and the
same symbol thus traditionally has several meanings, usually quite clear from the context. Occasionally, however,
the danger of mix-up occurs. An example in case is the traditional use of the letter E for electrical field strength and
for energies (and for Young's modulus in German). While in conventional texts one must give a different letter to
these quantities, we will use the advantage of HTML and use color coding whenever the possibility of negative
symbol interference raises its ugly head.

The density and mobility of mobile charged carriers thus determines the conductivity.

The carrier density is a function of bonding (metallic, covalent in semiconductor, etc.), defects (doping in
semiconductors) and temperature in general. In metals, however, ne is nearly constant.
The mobility is a function of collisions between carriers (e.g. electrons and holes) and/or between carriers and
obstacles (e.g. phonons and crystal lattice defects).

Carrier concentration and mobility are, in general, hard to calculate from first principles. In semiconductors, the carrier
density is easy to obtain, mobility is somewhat harder. In metals, the carrier density is rather fixed, but mobility is quite
difficult to calculate, especially for "real" i.e. rather imperfect crystals. There are however, empirical rules or "laws".

Ohm's "law" asserting that σ is not a function of E but only of some material property that can be expressed as a
number.
Matthiesen's rule, stating that

ρ =  ρLattice(T) + ρdefect(N)

With N = some measure of defect density.

A "rule of thumb": ρ is proportional to T for T > some Tcrit

∆ρ  =  αρ · ρ · ∆Τ  ≈ 
0,4%

oC

With Temperature coefficient αρ = 1/ρ · dρ / dT.

Then we have the Wiedemann-Franz "law", linking electrical conductivity to thermal conductivity, and so on.

The links give some graphs and numbers for representative metals.

Table of some metal properties

ρ(T) for different defect densities in Na

ρ(T) for different metals
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Some Values and Comments
  

The range of resistivity values (at room temperature) for metals is rather limited; here are some values as well as a first
and last reminder that σ and ρ, while closely related, are quite different parameters with a numerical value that depends
on the choice of the units! Do not mix up cm and m!

Metal Ag Cu Au Al Na Zn Ni Fe Sn Pb Hg

ρ [μΩcm] 1,6 1,7 2,2 2,7 4,2 5,9 6,8 9,7 12 21 97

σ = 1/ρ
[106 · Ω–1cm–1] 0.625 0.588 0,455 0.37 0.238 0.169 0.147 0.103 0.083 0.046 0.01

σ = 1/ρ
[106 · Ω–1m–1] 62,5 58.8 45.5 37 23.8 16.9 14.7 10.3 8.3 4.6 1

The temperature dependence, expressed e.g. in ρ(300K)/ρ(100K) may be a factor of 5 ...10, so it is not a small
factor. It may be used and is used, for measuring temperatures, e.g. with well-known Pt resistivity thermometers.
This is something you should be aware of; cf. the anecdote in the link.

The specific resistivity, however, is not the only property that counts. In selecting a metal, important design parameters
might also be:

Weight, mechanical strength, corrosion resistance, prize, compatibility with other materials, .....

Sometimes it is advisable to look at "figures of merit", i.e. the numerical value coming out of a self-made formula that
contains your important criteria in a suitable way.

One very simple example: Lets say, weight is important. Define a figure of merit = F = ρ/ d, with d = density. The
bigger F, the better.
You now get the following ranking (normalized to FNa = 1):

Metal Na K Ca Al Mg Cu Ag

F 1 0,77 0,69 0,56 0,52 0,28 0,25

The winner sodium! So you are going to use Sodium - Na for wiring?

Certainly not. Because now you will either include chemical stability C in your figure of merit (just multiply with C
and assign values C = 1 for great stability (e.g. Au, Al,), C = 2 for medium stability (Cu, Mg) and C = 5 for unstable
stuff (Na, K, Ca). Or any other number reflecting the importance you put on this parameter. There is no ready made
recipe - if precise numbers are not existing, you take your personal grading scale.
And while you are at it, divide by some price index P. Use the price per kg, or just a rough grade scale.

In this simple example, you will get a surprising result: No matter what you do, the winner will be Al. It is the (base)
material of choice for heavy duty applications when weight matters. In not so simple questions, you really may
benefit from using the figure of merit approach.

Questionaire
Multiple Choice questions to 2.2.1
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2.2.2 Alloys

Pure metals are rarely used - in the real world you use alloys.

In principle, the specific resistivity ρ of an alloy can be obtained from the phase diagram and the ρ - values of the
phases involved. Lets look at the extremes:

1. Complete immiscibility, e.g. in the case of Au/Si, or Cu/W. We may treat the resulting mix of metal particles as a
network of resistors being linked in series and parallel. The volume fractions of the phases would constitute the weights
- the treatment is not unlike the elastic modulus of compounds.

But no matter what kind of volume fraction you use and how you treat the resistor network - the resulting resistivity
will never be smaller than that of the ingredient with the smallest resistivity.

2. Complete miscibility (e.g. Au/Ag, Cu/Ni). Experimentally we find for small amounts (some %) of B in A (with [B] =
concentration of B)

ρ  ≈   ρA + const. · [B]

This formula is a special case of Nordheims rule which states .

ρ  ≈   XA · ρA +  XB · ρB + const. · XA ·XB

This is pretty much an empirical law, it does not pay to justify it theoretically. Again, it is not possible to produce an
alloy with a resistivity smaller than one of its components.

If you have intermetallic compounds in your phase diagram, use Nordheim's rule with the intermetallic phases as XA and
XB.

This leaves open the possibility that some intermetallic phase, i.e. a defined compound with its own crystal lattice,
might have a lower resistivity than its constituents. While this is unlikely (if not outright impossible?) on theoretical
grounds, no such intermetallics have been found so far.

The sad fact then is that unleashing the full power of metallurgy and chemistry on mixing conductors (i.e. metals), will
not give you a conductor with a specific conductivity better than Ag.

You will have to turn to superconductors (forgetting about cost considerations), if you can't live with Ag.

Lets look at some examples:

Complete miscibility
(e.g. Au/Ag)

Miscibility gap
(e.g. Ag/Cu);
phase diagram in the link.

Intermetallic phases
(e.g. Cu/Au)
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What do we learn? Something simple:

Again: The resistivity always goes up in alloys or mixed materials as compared to the pure materials.

Things are generally complicated, but full of potential for custom tailored properties!

 

Questionaire
Multiple Choice questions to 2.1.2
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2.2.3 Non-Metalic Conductors

We will just give a brief look at some especially important or useful non-metallic conductors:

 

Conducting Polymers
That polymers, usually associated with insulators, can be very good conductors was a quite unexpected discovery
some 20 years ago (Noble prize 2001). They always need some "doping" with ionic components, however.

The resistivity can be exceedingly low. e.g. for Iodine (I) doped poly-acethylene (pAc) we may have.
ρ ≤ 6,7 μΩcm.
Or in other words: If you divide by the density for some figure of merit, it beats everything else, since
{ρ/density} (pAc) > {ρ/density} (Na)!
More typical, however, are resistivities around (10 .... 1000) μΩcm.

The conduction mechanism is along –C=C–C=C–C= chains, it is not yet totally clear. In fact, the first question is why
this kind of chain is not generally highly conducting. Use the link for the answer.

The conductivity is strongly dependent on "doping" (in the % range!) with ions, and on many other parameters, the
link gives an example.
So do not confuse this with the doping of semiconductors, where we typically add far less than 1 % of a dopant!

A new object of hot contemporary research are now semiconducting polymers which have been discovered about 10
years ago.

Transparent conductors
  

Indium Tin Oxide (ITO) (including some variations) is the only really usable transparent conductor with reasonable
conductivity (around 1 Ωcm)! It consists of SnO2 doped with In2O3.

ITO is technically very important, especially for:
- flat panel displays, e.g. LCDs .
- solar cells.
- research (e.g. for the electrical measurements of light-induced phenomena).
ITO is one example of conducting oxides, others are TiO, NiO, or ZnO. The field is growing rapidly and known as
"TCO" = Transparent Conducting Oxides

If you can find a transparent conductor much better than ITO (which leaves a lot to be desired), you may not get the
Nobel prize, but you will become a rich person rather quickly.

Since In is rare, and the demand is exploding since the advent of LCDs, you also would be a rich person of you
invested in In some years ago.
 

Ionic conductors
  

Solid Ionic conductors are the materials behind "Ionics", including key technologies and products like

Primary batteries.
Rechargeable (secondary) batteries.
Fuel cells.
Sensors.
High temperature processes, especially smelting, refining, reduction of raw materials (e.g. Al-production).

There is an extra module devoted to the Li ion battery. This is important for you if you are interested in driving an
affordable a car in 20 years or so.
They are also on occasion the unwanted materials causing problems, e.g. in corrosion or in the degradation of
dielectrics.
See Chapter 2.4 for some details about ionic conductors.

 

Advanced Materials B, part 1 - script - Page 32

http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_a/advanced/ta_4_1.html
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_2/illustr/t2_3_4.html
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_2/advanced/t2_2_3.html


Specialities: Intermetallics, Silicides, Nitrides etc.
  

Silicides, i.e. metal - silicon compounds, are important for microelectronics (ME) technology, but also in some more
mundane applications, e.g. in heating elements. Some resistivity examples for silicides:

Silicide MoSi2 TaSi2 TiSi2 CoSi2 NiSi2 PtSi Pd2Si

ρ (μΩcm) 40 ...100 38...50 13..16 10...18 ≈ 50 28...35 30...35

It looks like the winner is CoSi2. Yes, but it is difficult to handle and was only introduced more recently, like NiSi2.
In the earlier days (and at present) the other silicides given above were (and still are) used.

Some more examples of special conductors which find uses out there:

Material HfN TiN TiC TiB2 C (Graphite)

ρ (μΩcm) 30...100 40...150 ca. 100 6 ...10 1000

Superconductors
Superconductors are in a class of their own. All kinds of materials may become superconducting at low temperatures,
and there are neither general rules telling you if a material will become superconducting, nor at which temperature.

There will be an advanced module some time in the future.

 
Why do we need those "exotic" materials?. There are two general reasons:

1. Because, if just one specific requirement exists for your application that is not met by common materials, you
simply have no choice. For example, if you need a conductor usable at 3000 K - you take graphite. No other choice.
It's as simple as that.
2. Because many requirements must be met simultaneously. Consider e.g. Al for integrated circuits - there are
plenty of important requirements; see the link. Since no material meets all of many requirements, an optimization
process for finding an optimum material is needed.
Al won the race for chip metallization for many years, but now is crowded out by Cu, because in some figure of
merit the importance of low resistivity in the list of requirements is much larger now than it was in the past. It
essentially overwhelms almost all other concerns (if there would not be an almost, we would have Ag!).

Questionaire
Multiple Choice questions to 2.1.3
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2.2.4 Summary to: Conductors - Definitions and General Properties

What counts are the specific quantities:

Conductivity σ (or the specific resistivity ρ = 1/ σ.
current density j.
(Electrical) field strength · E.

[ ρ] = Ωm
[ σ] = ( Ωm)–1 = S/m; S = "Siemens"

The basic equation for σ is:
n = concentration of carriers,
µ = mobility of carriers.

σ  =  |q| · n · µ

Ohm's law states:
It is valid for metals, but not for all materials.

 
j  =   σ · E

   
σ (of conductors / metals) obeys (more or less) several rules; all
understandable by looking at n and particularly µ.

 

Matthiesen rule:
Reason: Scattering of electrons at defects (including phonons)
decreases µ.

 
ρ =  ρLattice(T) + ρdefect(N)

"ρ(T) rule":
about 0,04 % increase in resistivity per K
Reason: Scattering of electrons at phonons decreases µ.

 

∆ρ  =  αρ · ρ · ∆Τ  ≈ 
0,4%

oC

Nordheim's rule:
Reason: Scattering of electrons at B atoms decreases µ.

 
ρ  ≈   ρA + const. · [B]

     
Major consequence: You can't beat the conductivity of pure Ag by
"tricks" like alloying or by using other materials
(Not considering superconductors).

    
Non-metallic conductors are extremely important.   

Transparent conductors (TCO's)
("ITO", typically oxides).

 
No flat panels displays = no
notebooks etc. without ITO!

Batteries, fuel cells, sensors, ...

Example: MoSi2 for heating elements
in corrosive environments
(dishwasher!).

The future High-Tech key materials?

Ionic conductors (liquid and solid).  

Conductors for high temperature applications; corrosive
environments, ..
(Graphite, Silicides, Nitrides, ...).

 

Organic conductors (and semiconductors).  

     
Numbers to know (order of magnitude accuracy sufficient)  

ρ(decent metals) about 2 μΩcm.
ρ(technical semiconductors)
around 1 Ωcm.
ρ(insulators) > 1 GΩcm.

  
Questionaire

All Multiple Choice questions to 2.1
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2.3. General Applications

2.3.1 Normal Conductors

A world without conductors is even harder to imagine than a world without semiconductors. Examples for applications
include

High-voltage free-air power transmission lines.
High voltage wires for trains (getting "scratched" all the time).
In-house wiring.
Low-voltage wiring (car systems).
High current wiring (machines).
System on-board wiring.
Bond wires for IC's (diameter < 30µm).
Metallization on chips.
Screening electrical or magnetic fields.
Avoidance of electrostatic charging.
Electrodes for batteries, chemical reactors etc.
Antennas.

Each use has special requirements which should be met by the conducting material.

Some examples for requirements

Money (Use of Au, Ag, Pt etc. may be critical).
Chemistry (general stability and reactivity; esentiall excludes Na, K, Hg etc. for most applications; corrosion
properties, ...).
Mechanical properties (Pure metals are often too soft, but alloys have higher resistivity).
Thermal properties (temperature coefficient; no metal usable beyond ca. 1000 K) .
Compatibility with other materials (contact corrosion, solderability, thermoelectric and thermomechanical
properties, general chip compatibility, ...).
Compatibility with production technologies (e.g. thin film deposition methods, wire making (try this with a
brittle superconductor!),...).

Whole families of conductors, fine-tuned for a specific applications, were developed; below are some examples.

Cu based conductors

 There are many precisely specified Cu-based conductors for all kind of specific applications, examples are given in
the link.
Al based conductors

 This family is primarily used for high-voltage free-air cables (in combination with a steel core) because of best fitting
in terms of conductivity - price - mech. strength - corrosion requirements; cf. the illustration in the link.
Others

In one IC you may find the following conductor materials:

Poly crystalline highly doped Si.
Silicides; i.e. Si - metal compounds like NiSi2.
Al with ≤ 1% of Si and Cu if the chip was made before, say, 2000.
Cu with some additions instead of Al if the chip was made after 2000.
W.
TiN.

because one material simply does not meet the specific requirements for conductor on chips.
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2.3.2 Contacts

Contacts, meaning mechanical contacts here, are a major part of most electronic products. Even if there is no
mechanical switch anymore, you still have the contact between the plug and the outlet, and/or the contact springs for
the batteries.
Contacts include the following items:

Switches, plugs, relays, connections to removable parts (batteries, light bulbs, ...), pantographs (the thing on top
of a locomotive), "brushes" (for motors), and so on.
Contacts are also the components or materials that often cause trouble. Contacts or switches are often the first
components to break, and thus a nuisance to consumers like you and me.

There are many specific requirements for contact materials:

Small contact resistance (it is never zero).
No sticking or welding under load.
No abrasion under load.
No intermixing of materials.
No wearing and tearing.
Suitable mechanical properties, e.g. good elasticity (forever) for switches.

There are specific materials and group of materials generally favored for contacts:

C (graphite in many forms) for pantographs and whenever you want to draw a big current.
Cu, Ag, Au.
Ru, Rh, Pd, Os, Ir, Pt.
Mo, W.
....

An example of Ag-based contact materials can be found in the link.

For contact applications we find expensive materials, because in many applications only small quantities are
needed and the inertness of noble metals is what counts.
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2.3.3 Resistors and Heating

Resistors

Basic requirements for resistors (still one of the most numerous component in circuits) are:

Large region of R values (= device resistance in Ω) within one production technology.
Small (ideally vanishing) temperature coefficient .
Minimal noise.
Small dependence of ρ on production parameters (good repeatability).
No Ageing.
Small thermoelectrical coefficients to Cu (you want a resistor, not a thermoelement).

Materials of choice include

Ta, Ta based alloys, and in particular "Constantan" (55% Cu, 44% Ni, 1% Mn), a resistor material with an
especially small temperature coefficient αρ, but a large thermoelectric coefficient).
Strange mixtures of conductors and insulators including "Cermet" (short for Ceramics - Metals), e.g. Cr - SiO2.

Details and data in the (future) link.

Heating

Basic requirements for heating elements are:

High melting point.
Chemical stability at high temperatures and in potentially corrosive environments.
Mechanical strength at high temperatures.

The choice of a materials depends significantly on the range of temperatures envisioned. We have:

FeNiCr, FeNiAl alloys.

Pt, W, Ta, Mo - stable elements with a high melting point.

MoSi2 Among more industrial applications also used as heaters in dish washers - this is very aggressive
environment!
Graphite (up to 3000 K in non-oxidizing gas).

Some details and data can be found in the links.

Overview of resistivity and temperature range for some materials

Maximum temperatures for some materials
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2.3.4 Summary to: Conductors - General Applications

No electrical engineering without conductors!
Money, Chemistry (try Na!),
mechanical and thermal properties,
compatibility with other materials,
compatibility with production
technologies, ...

Hundreds of specialized metal alloys exist just for "wires"
because besides σ, other demands must be met, too:

 

Example for unexpected conductors being "best" compromise:
Poly Si, Silicides, TiN, W in
integrated circuits.

   
Don't forget Special Applications:  

Contacts (switches, plugs, ...);
Resistors;
Heating elements; ...
Transparent conductors
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2.4. Special Applications

2.4.1 Thermionic Emission

Cathodes in cathode ray tubes (CRT), in regular electron tubes (still used for special applications), but also in all
electron beam tools as e.g. electron microscopes or electron beam welding, are one example of special conductors. We
need to have free electrons in the material and we need to extract them from the material.

For good cathodes we wish for some specific properties: First we want to extract lots of electrons easily and in large
quantities (i.e. we want high current densities for little money).
Second, we want to extract them from a very small area (for high brightness), so that we can consider the electron
beam to come from a point source which makes (electron) optics a lot less complicated to handle!

Lets look at the free electron gas model and see how we can extract electrons in general.

For a metal, there are lots of electrons in the last band at all energies up to the Fermi energy, and at very low
temperatures it takes at least the energy EA to push an electron up the energy scale to E∞, where it would be free
to go wherever it wants - it is no longer "bound" to the crystal. We call that particular energy the work function of
the material.

The work function EA of the material is thus the decisive quantity; it is the difference between the Fermi energy and
the potential at infinity E∞.

EA =   EF  –  E∞

If we let E∞ = 0 and have the energy scale going "down", we simply have .

EA =   EF

The current density for thermionic emission is given by the well-known Richardson equation, which we obtain by
calculating how many electrons will have sufficient energy (and momentum) to overcome the energy barrier to the
outside world from the energy distribution of electrons in a free electron gas model.

The necessary calculation is not too difficult but lengthy so we will not do it here. The result, however, is simple and
given below. The Richardson equation for the current density j from a hot surface states:

j  =  A · T 2 · exp –
EA

kT

From measuring j = j(T) we expect (almost) Arrhenius behavior; EA then follows from the slope of the plot, the
constant A from its intersection with the j - axis.
If you are unsure about what this function looks like, use the function generator and play a bit.

The pre-exponential factor A can be calculated from the free electron gas model, but than it is only a crude
approximation for real materials. Its free-electron-gas value is:
Atheo = 120 A · cm–2 · K–2.

Lets compare that to some measured values (and bear in mind that A may depend on the Miller indices of the
crystallographic plane from which we extract electrons, too - so numbers vary):
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Material Fe Ni Pt Ta W Cs LaB6

A
[Acm–2K–2] 26 30 32 55 60 162 25

EA
[eV] 4,5 - 4,8 5,15 - 5,35 5,65 4,15 - 4,8 4,2 1,8 - 2,14 2,6

Tm
[oC] 1 535 1 452 1 755 2 850 3 410 28,4 2 210

Cs has the lowest work function, but its melting point is so low that it is of no use. Optimizing everything, the winners
are:

W, the workhorse for cathode materials.

LaB6, a rather exotic material, because single crystals with very fine tips can be made that provide high current
densities from a very small area. This is important whenever you want to focus the electron beam on a "point", e.g.
in scanning electron microscopes. The focal point cannot be smaller than the area from where the electron beam
was extracted from - and you like it to be in the nm region. The price one has to pay for this (besides for the LaB6
cathode, which is not cheap), is that the cathode has to be run in ultra high vacuum (UHV), because the fine tip
would otherwise soon be damaged by ion bombardment resulting from ions extracted out of the residual gas
atmosphere.
 

Questionaire
Multiple Choice questions to 2.3.1

(and 2.3.2)
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2.4.2 Field Enhanced Emission and Tunnelling Effects

If you run a cathode, emitting an electron beam, with large electrical fields between the cathode and the anode, you will
find that your workfunction EA seems to change to smaller values as the field strength increases.

This is called Schottky effect; it is observed at large field values of (105 - 108)V/cm.

If you apply even higher field strengths (and remember: E = U/d; you do not need high voltages U, only small
dimensions d), EA seems to vanish altogether.

 
This effect is is called field emission. It works even at room temperature and is barely
temperature dependent, so it can not be a temperature activated process.
Field emission is rather easy to obtain: all you have to do, is to make a very fine tip
with a curvature of the tip in the nm - range as shown on the left.
Field emission might then occur with a few Volts between the anode and the tip,
because all the field lines will have to converge on the small tip.

 
How can we understand these effects? Whereas the Schottky effect is relatively straight forward, field emission is a
manifestation of the tunnelling effect, a purely quantum mechanical phenomenon.

Lets look at how the free electron gas model must be modified at high field strengths - and we will be able to account
for both effects.

The potential energy E outside of the material is such that electrons are to be extracted - it is not constant, but
varies with the field strength E simply as

E  =  e · E · x

E, the (constant) applied field strength (written in mauve to make sure that we do not mix it up with the energy E).
We have the following situation:

Simply summing up the energies graphically yields the qualitative energy curve for an electron at the edge of a
crystal as shown below.

Whichever way you superimpose the potential energies, the potential barrier to the outside world will always be
reduced. This explains qualitatively the Schottky effect.

The field emission effect requires a somewhat different consideration.

Lets look at the extremes of the Schottky effect. For really high field strengths the potential barrier gets even lower
and thinner, it may look somewhat like this:
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Now the tunneling effect may occur. It is a phenomenon inherent in quantum mechanics and allows electron "waves"
to "tunnel" through a potential barrier.

In other words, the value of the wave function ψ for an electron does not got to zero abruptly at a potential barrier,
but decays exponentially. There is then a finite amplitude for ψ on the other side of the potential barrier, an effect
that is felt if the barrier is "thin" and low - as in the picture above. If the field strength is high enough, large quantities
of electrons can directly tunnel to the outside world. More about tunnelling in the link.

Field emission thus is a purely quantum mechanical effect; there is no classical counterpart whatsoever. It is used in a
growing number of applications:

Electron microscopes for special purposes (e.g. scanning electron microscopes with high resolution at low beam
voltage, a must for the chip industry) are usually equipped with field emission "guns".
"Scanning Tunnelling Microscopes" (STM) which are used to view surfaces with atomic resolution, directly
employ tunnelling effects.
Large efforts are being made to construct flat panel displays with millions of miniature field emission cathodes - at
least one per pixel.
Some semiconductor devices (e.g. the "tunnel diode") depend on tunnelling effects through space charge regions.

In other contexts, tunnelling is not useful, but may limit what you can do. Most notorious, perhaps, is the effect that very
thin insulators - say 5 nm and below - are insulating no more, a growing problem for the chip industry.

Questionaire
Multiple Choice questions to 2.3.1

and 2.3.2

 

Advanced Materials B, part 1 - script - Page 42

http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_2/advanced/t2_4_1.html
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_2/exercise/c2_4_1.html


2.4.3 Thermoelectric Effects

General Consideration

So far we have only considered one conducting material; the unavoidable contacts between conductors, implicitly
always required, were seemingly devoid of special properties.

We know that this is not true for many other contacts; e.g. combinations of

semiconductor - semiconductor.
semiconductor - conductor.
ionic conductor - conductor.

What about metal - metal contacts?

We routinely solder wires of different conductors together or join them in any way, and do not worry about the contacts.
Besides, maybe, a certain (usually small) contact resistance which is a property of the interface and must be added to
the resistance of the two materials, there seems to be no other specific property of the contact.

But that is only true as long as the temperature is constant in the whole system of at least two conductors.

The reason for this is that we always get a contact voltage, as in the case of semiconductors, but the extension of
the charged layers at the interface (the Debye lengths) is so short that no specific phenomena result from this.
Consider the band diagrams before and after joining two metals

We have a dipole layer of charges at the interface which, owing to the large carrier density, is extremely thin and does
not hinder current flow (it is easy for electrons to tunnel through the potential barrier).

We also have a contact potential, which is called the Volta potential. Since in any closed circuit (containing, e.g.,
the wires to the voltmeter), the sum of the Volta potentials must be zero in thermal equilibrium, it therefore can
not be measured directly.
If, however, one of the at least two contacts needed for a closed circuit is at a temperature T2 that is different from
the temperature T1 of the first contact, we have non-equilibrium and now a voltage may be measured. We observe
the Seebeck effect, one of several thermoelectric effects.

We will not go into details here (consult the link for this) but will only mention some applications and related effects.

 

 Seebeck Effect
  

The Seebeck effect is the base for thermoelements or thermocouples, the standard device for measuring
temperatures (the good old mercury thermometer is virtually nonexistent in technical applications, especially at high
temperatures).

 
Lets look at a typical situation: We have a thermocouple mader with a material 1 and
a material 2. It's "contacted" by whatever (material 3, black lines). The junction of
material1 and material 2 is hot, the rest is cold (and has the same temperature).

  The voltmeter will show a thermovoltage that depends on ∆T and the two materials
forming the thermocouple.

 

Advanced Materials B, part 1 - script - Page 43

http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_2/advanced/t2_4_2.html


Generally, the thermovoltage should be larger for couples of conductors with very different Fermi energies or carrier
densities, since then the Volta potential is larger.
Being more specific, the Volta potential should follow Nernsts law. But here we are only interested in the practical
aspects of thermocouples.

For technically important materials, it is convenient to construct a voltage scale for thermocouples given in mV/100K.

The voltage measured for a temperature difference of 100 K is then the difference of the two values given on that
scale for the two materials joined in a thermocouple. The zero point was arbitrarily chosen for Pt.

Bi Ni Pd Pt Hg PtRh Cu Mo Fe NiCr Sb

-7,7 -1,5 -0,3 0 0 0,7 0,77 1,2 1,92 2,6 4,8

Useful couples are, e.g. Ni/NiCr, with a thermovoltage of ca. 4 mV/100K and a usable temperature range up to 1000
K.

The Seebeck effect, for many years extensively used for measuring temperatures, can also be used to convert heat
energy directly into electrical energy. Thermoelectric generators are becoming an exciting field of materials science,
because optimized materials, based on a thorough understanding of the requirements for power generation and the
concomitant requirements for the materials, are becoming available.
 

Other Thermoelectric Effects
  

There are several thermoelectrical effects which are deeply routed in non-equilibrium thermodynamics. Essentially,
there is a "reciprocating" coupling of gradients in driving forces and currents of any kind (not just electrical currents but
also, e.g. particle currents, heat currents, or even entropy currents).

 Reciprocating means, that if a gradient - e.g. in the temperature - induces an electric current across a junction (the
Seebeck effect), than an electric current induced by some other means must produce a temperature gradient. And
this does not address the heating simply due to ohmic heating!

 The "reversed" Seebeck effect does indeed exist, it is called the Peltier effect. In our schematic diagram it looks
like this:

  
 An electrical current, in other words, that is driven through the system by a battery,

would lead to a "heat" current, transporting thermal energy from one junction to the
other one. One junction then goes down in temperature, the other one goes up.

This effect would also occur in hypothetical materials with zero resistivities (we do
not mean superconductors here). If there is some resistance R , the current will
always lead to some heating of the wires everywhere which is superimposed on the
Peltier effect.

 
The temperature difference ∆T between the two junctions due to the external current density j induced by the
battery and the Peltier effect then is approximately given by

∆T ≈  const. · j

The removal of heat or thermal energy thus is linear with the current density

But there is always heating due to by ohmic losses, too. This is proportional to j2, so it may easily overwhelm the
Peltier effect and no net cooling is observed in this case.

The Peltier effect is not useful for heating - that is much easier done with resistance heating - but for cooling!

With optimized materials, you can lower the temperature considerably at one junction by simply passing current
through the device! The Peltier effect actually has been used for refrigerators, but now is mainly applied for
controlling the temperature of specimens (e.g. chips) while measurements are being made.

One can do a third thing with thermoelements: Generate power. You have a voltage coupled to a temperaturr difference,
and that can drive a current through a load in the form of a resistor.
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Invariably the question of the efficiency η of power generation comes up. How much
of the thermal energy in the system is converted to electrical energy?

  This is not easy to calculate in detail. It is, however, very easy to guess to what
parameters η will be proportional:

η ∝ 1/κ; κ = thermal conductivity..
η ∝ σ; σ = electrical conductivity
η ∝ S; S = Seebeck coefficient

If the thermal conductivity κ is large, you cannot maintain a thermal gradient for very
long. If the electrical conductivity σ is small, you loose energy by heating the
resistor. It is thus clear that the efficiency is proportional to σ/κ.
The Seebeck coefficient S, finally, simply characterizes the materials to be used.
Unfortunately, for most materials, a large σ implies a large κ - think of any metal, for
example!

     
There is one more effect worthwhile to mention: If you have an external current and an external temperature gradient at
the same time, you have the Thomson effect. But we mention that only for completeness; so far the Thomson effect
does not seem to be of technical importance. Again, more information is contained in the link.

Questionaire
Multiple Choice questions to 2.3.3
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2.4.4 Summary to: Conductors - Special Applications

Thermionic emission provides electron beams.
The electron beam current (density) is given by the Richardson
equation: j  =  A · T 2 · exp –

EA

kTAtheo = 120 A · cm–2 · K–2 for free electron gas model
Aexp ≈ (20 - 160) A · cm–2 · K–2

EA = work function ≈ (2 - >6) eV  

Materials of choice: W, LaB6 single crystal  

High field effects (tunneling, barrier lowering) allow large currents at
low T from small (nm) size emitter

 Needs UHV!

    
There are several thermoelectric effects for metal junctions; always
encountered in non-equilibrium.

  

Seebeck effect:
Thermovoltage develops if a metal A-metal B junction is at a
temperature different form the "rest", i.e. if there is a
temperature gradeient

Essential for measuring (high)
temperatures with a "thermoelement"
Future use for efficient conversion of
heat to electricity ???

Peltier effect:
Electrical current I through a metal - metal (or metal -
semiconductor) junction induces a temperature gradient ∝ I, i.e.
one of the junction may "cool down".

 
Used for electrical cooling of
(relatively small) devices. Only big
effect if electrical heating (∝ I2) is
small.

  
Questionaire

All Multiple Choice questions to 2.4
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2.5 Ionic Conductors

2.5.1 General Remarks

In ionic conductors, the current is transported by ions moving around (and possibly electrons and holes, too).
Electrical current transport via ions, or ions and electrons/holes, is found in:

Conducting liquids called electrolytes.

Ion conducting solids, also called solid electrolytes.

Ionic conductivity is important for many products:

Type I and type II batteries (i.e. regular and rechargeable).

Fuel cells.

Electrochromic windows and displays.

Solid state sensors, especially for reactive gases.

In contrast to purely electronic current transport, there is always a chemical reaction tied to the current flow that takes
place wherever the ionic current is converted to an electronic current - i.e. at the contacts or electrodes. There may be,
however, a measurable potential difference without current flow in ionic systems, and therefore applications not involving
chemical reactions.

This is a big difference to current flow with electrons (or holes), where no chemical reaction is needed for current
flow across contacts since "chemical reactions " simply means that the system changes with time.

If we look at the conductivity of solid ionic conductors, we look at the movement of ions in the crstal lattice - e.g. the
movement (= diffusion) of O– or H+ ions either as interstitials or as lattice ions.

In other words, we look at the diffusion of (ionized) atoms in some crstal lattice, described by a diffusion coefficient
D.
Since a diffusion coefficient D and a mobility µ describe essentially the same thing, it is small wonder that they are
closely correlated - by the Einstein-Smoluchowski relation (the link leads you to the semiconductor Hyperscript
with a derivation of the equation).

µ   = 
e · D

kT

The conductivity of a solid-state ionic conductor thus becomes

σ  =  e · c · µ   = 
e2 · c · D

kT 
  = 

e2 · c · D0

kT  
· exp– 

Hm

kT 

with the normal Arrhenius behaviour of the diffusion coefficient and Hm = migration enthalpy of an ion, carrying one
elementary charge. In other words: we must expect complex and strongly temperature dependent behaviour; in
particular if c is also a strong function of T.

   

Ionics is the topic of dedicated lecture courses, here we will only deal with two of the fundamental properties and
equations - the Debye length and the Nernst equation - in a very simplified way.

The most general and most simple situation that we have to consider is a contact between two materials, at least
one of which is a solid ionic conductor or solid electrolyte. Junctions with liquid electrolytes, while somewhat more
complicated, essentially follow the same line of reasoning.

Since this involves that some kind of ion can move, or, in other words, diffuse in the solid electrolyte, the local
concentration c of the mobile ion can respond to two types of driving forces:

1. Concentration gradients, leading to particle currents jdiff (and, for particles with charge q, automatically to an
electrical current jelect  =  q · jdiff)  given by Ficks laws

jdiff  =  – D · grad(c)

With D = diffusion coefficient of the diffusing particle.
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2. Electrical fields E, inducing electrical current according to Ohms law (or whatever current - voltage -
characteristics applies to the particular case), e.g.

jfield  = σ · E  =  q · c · µ · E

With µ = mobility of the particle.

Both driving forces may be present simultaneously; the total current flow or voltage drop then results from the combined
action of the two driving forces.

Note that in one equation the current is proportional to the gradient of the concentration whereas in the other
equation the proportionality is to the concentration directly. This has immediate and far reaching consequences for
all cases where in equilibrium the two components must cancel each other as we will see in the next sub-chapter.

In general, the two partial currents will not be zero and some net current flow is observed. Under equilibrium conditions,
however, there is no net current, this requires that the partial currents either are all zero, or that they must have the
same magnitude (and opposite signs), so that they cancel each other.

The equilibrium condition thus is

q · jdiff  =  jfield

The importance of this equation cannot be over emphasized. It imposes some general conditions on the steady
state concentration profile of the diffusing ion and thus the charge density. Knowing the charge density distribution,
the potential distribution can be obtained with the Poisson equation, and this leads to the Debye length and
Nernsts law which we will discuss in the next paragraphs.
 

Questionaire
Multiple Choice questions to all of 2.4
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2.5.2 Debye Length

Equilibrium of Diffusion and Field Currents

Nernst law is a special answer to the general and important question:

How do charged and mobile particles redistribute themselves in an electrical potential
if there are some restrictions to the obvious solution

that they all move to one or the other pole of the field?

It is the answer to this question that governs not only pn-junctions, but also batteries, fuel cells, or gas sensors,
and, if you like, simply all junctions.

Let us consider a material that essentially contains mobile carriers of only one kind, i.e. a metal (electrons) , a (doped)
semiconductor (electrons or holes, depending on doping), or a suitable ionic conductor (one kind of mobile ion).

We imagine that we hold a positively charged plate at some (small) distance to the surface of a material having
mobile negative charges (a metal, a suitable ionic conductor, a n-doped semiconductor, ...). In other words, the
positively charged plate and the material are insulated, and no currents of any kind can flow between the two.
However, there will be an electrical field, with field lines starting at the positive charges on the plate and ending on
the negative charges inside the material. We have the following situation:

In a naive (and wrong) view, enough negatively charged carriers in the material would move to the surface to screen the
field completely, i.e. prevent its penetration into the material. "Enough", to be more precise, means just the right number
so that every field line originating from some charge in the positively charged plate ends on a negatively charged carrier
inside the material.

But that would mean that the concentration of carriers at the surface would be pretty much a δ- function, or at least
a function with a very steep slope. That does not seem to be physically sensible. We certainly would expect that
the concentration varies smoothly within a certain distance, and this distance we call Debye length right away.
As you might know, the Debye length is a crucial material parameter not only in all questions concerning ionic
conducitvity (the field of "Ionics"), but whenever the carrier concentration is not extremely large (i.e. comparable to
the concenetration of atoms, i.e in metals).

We will now derive a simple formula for the Debye length. We start from the "naive" view given above and consider its
ramifications:

If all (necessarily mobile) carriers would pile up at the interface, we would have a large concentration gradient and
Ficks law would induce a very large particle current away from the interface, and, since the particles are charged,
an electrical current at the same time! Since this electrical diffusion current jel, Diff  is proportional to the
concentration gradient  –grad (c(x)), we have:

jel, Diff(x)  =  – q · D · grad (c(x))

With D = diffusion coefficient. Be clear about the fact that whenever you have a concentration gradient of mobile
carriers, you will always have an electrical current by necessity. You may not notice that current because it might
be cancelled by some other current, but it exists nevertheless.

The electrical field E(x), that caused the concentration gradient in the first place, however, will also induce an electrical
field current (also called drift current)  jfield(x), obeying Ohms law in the most simple case, which flows in the
opposite direction of the electrical diffusion current. We have:
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jfield(x)  =  q · c · µ · E(x)

With µ = mobility, q = charge of the particle (usually a multiple of the elementary charge e of either sign); q · c · µ,
of course, is just the conductivity σ
The total electrical current will then be the sum of the electrical field and diffusion current.

In equilibrium, both electrical currents obviously must be identical in magnitude and opposite in sign for every x, leading
for one dimension to

q · c(x) · µ · E(x)  =  q · D ·
dc(x)

dx

Great, but too many unknowns. But, as we know (????), there is a relation between the diffusion coefficient D and the
mobility µ that we can use; it is the Einstein-Smoluchowski relation (the link leads you to the semiconductor
Hyperscript).

µ = e · D/kT

We also can substitute the electrical Field E(x) by – dU(x)/dx, with U(x) = potential (or, if you like, voltage) across
the system. After some reshuffling we obtain

– e
dU(x)

dx
 =  

kT

c(x)
 · 

dc(x)

dx
 =  kT ·

d [lnc(x)]

dx

We used the simple relation that d (lnc(x)) / dx = 1/c(x) · dc(x)/dx. This little trick makes clear, why we always find
relations between a voltage and the logarithm of a concentration.
This is a kind of basic property of ionic devices. It results from the difference of the driving forces for the two
opposing currents as noted before: The diffusion current is proportional to the gradient of the concentration whereas
the field current is directly proportional to the concentration.

Integrating this simple differential equation once gives

U(x)  +  
kT

e
 · ln c(x)  =  const.

Quite interesting: the sum of two functions of x must be constant for any x and for any functions conceivable; the
above sum is obviously a kind of conserved quantity.
That's why we give it a name and call it the electrochemical potential Vec (after muliplying with e so we have
energy dimensions). While its two factors will be functions of the coordinates, its total value for any (x,y,z)
coordinate in equilibrium is a constant (the three dimensional generalization is trivial). In other words we have

Vec  =  V(x)  +  kT  · ln c(x)

with V(x) = e · U(x) = electrostatic potential energy.

The electrochemical potential thus is a real energy like the potential energy or kinetic energy.

Obviously, in equilibrium (which means that nowhere in the material do we have a net current flow) the electrochemical
potential must have the same value anywhere in the material.

This reminds us of the Fermi energy. In fact, the electrochemical potential is nothing but the Fermi energy and the
Fermi distribution in disguise.
However, since we are considering classical particles here, we get the classical approximation to the Fermi
distribution which is, of course, the Boltzmann distribution for EF or Vec, respectively, defining the zero point of
the energy scale.

This is easy to see: Just rewriting the equation from above for c(x) yields
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c(x)  = exp – 
(Vx) – Vec

kT

What we have is the simple Boltzmann distribution for classical particles with the energy (Vx) – Velectrochem.

 

Calculating the Debye Length

First we realize that the voltage or potential distribution (voltage times e) in the interior of a material in equilibrium can
only be caused by concentration distributions of carriers that obey equilibrium statistics, i.e. the Boltzmann or the
Fermi distribution.

This is simply what the equation above tells us.

What we still need in order to calculate the Debye length is a linkage between potentials e · U(x) = V(x) and
concentrations c(x).

This is of course what the Poisson equation, the main equation for electrostatics, is all about. We will only look at
the one-dimensional case here. The Poisson equation than states

–
d2U

dx2
 = 

dE

dx
 = 

e · c(x) 

εε0

Now, for good conductors (i.e. c(carriers) ≈ density of atoms ≈ 1022 cm–3), only a few of the carriers (a very small
percentage) are needed to screen any reasonable electrical field. If you do not see this, do the exercise!

Exercise 2.5.1
Field Screening

We may thus assume within a very good approximation that the carrier density at any point is given by the constant
volume density  c0 of the field free material, plus a rather small space dependent addition c1(x); i.e.

c(x)  =  c0  +  c1(x)

Obviously, only c1(x) is important for Poissons equation.

From Boltzmanns distribution we know that

c(x)

c0

  =  1  +
c1(x)

c0

 =  exp




−
∆(energy)

kT





 =  exp




– 
V(x)

kT





because the difference in energy of a carrier in the field free volume (i.e. where we have c0) is simply the
electrostatic energy associated with the electrical field.
Since we assumed c1 << c0, we may with impunity express the exponential function as a Taylor series of which
we only retain the first term, obtaining:

1  + 
c1(x)

c0

 ≈  1  +  
V(x)  

kT

c1(x)  =  c0 ·
V(x)

kT
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This is a simple trick, but important. Feeding the result back into Poissons equation yields:

d2 [c1(x)]

dx2
 =  

e2 · c0 · c1(x)

ε · ε0 · kT

For a simple one-dimensional case with a surface at x = 0 we obtain the final solution

c1(x)  =  c1(x = 0) · exp –
x

d

The quantity d is the Debye length we were after, it is obviously given by

d  =  Debye length   =  




ε · ε0 · kT

e2 · c0





1/2

The Debye length is sometimes also called Debye-Hückel length (which is historically correct and just).

c1(x = 0), of course, is given by the boundary condition, which for our simple case is:

c1 (x = 0)  =  c0 ·
V (x = 0)

kT

What is the meaning of the Debye length? Well, generalizing a bit, we look at the general case of a material having
some surplus charge at a definite position somewhere in a material

Consider for example the phase boundary of a (charged) precipitate, a charged grain boundary in some crystal, or
simply a (point) charge somehow held at a fixed position somewhere in some material. The treatment would be quite
similar to the one-dimensional case given here.

What we know now is quite important:

If you are some Debye lengths away from these fixed charges, you will not "see" them anymore; their effect on the
equilibrium carrier distribution then is vanishingly small.
The Debye length resulting in any one of these situations thus is nothing but the typical distance needed for
screening the surplus charge by the mobile carriers present in the material.
In other words, after you moved about one Debye length away from the surplus charge, its effects on the mobile
charges of the material are no longer felt.

More about the Debye length can be found in the Hyperscript "Semiconductors".

Questionaire
Multiple Choice questions to all of 2.5
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2.5.3 Nernst's Equation

Nernst's equation gives the voltage between two materials in close contact, i.e. the potential difference between the
two materials. From the foregoing discussion, we know already two important facts about this potential:

It will change from one value to the other over a distance across the junction that is given by the (two) Debye
lengths of the system.
The corresponding carrier concentrations are equilibrium concentrations and thus governed by the Boltzmann
distribution (considering only classical particles at this point).

If the potential difference is ∆U, we thus, using the Boltzmann distribution, obtain for the concentration of the carriers  c1
in material 1, and c2 in material 2:

c1

c2

 =  exp –
e · ∆U

kT

This is already Nernst's equation (or law) - in a somewhat unusual way of writing.

Usually we (and everybody else) use the Boltzmann distribution to compute concentrations as a function of some other
known parameters - the energy in this case. But this is not the only way for using a general equation!

Like any equation, it also works in in reverse: If we know the concentrations, we can calculate the energy difference
that must go with them!
The important point now is that the concentrations of electrons in metals, but also of ions in ionic conductors, or
holes in semiconductors, or any mobile carrier a few Debye lengths away from the junction, are fixed - there is no
need to compute them!
What is not fixed is the potential difference e · ∆U a few Debye lengths away from the junction, and that is what we
now can obtain from the above equation by rewriting it for ∆U:

∆U  =  –  
kT

e
  ·  ln 

c1

c2

This is Nernst's equation in its usual, but somewhat simplified form. We may briefly consider two complications:

1. If the particles carry z elementary charges, the first factor will now obviously write kT/(z · e).

2. If the interaction between particles is not negligible (which would mean, e.g., that Ficks law in its simple form
would not be usable), the concentrations have to be replaced by the activities a of the particles.
If you want to know in detail what activities are - use the link. But all you have to know at this point is that activities
are the particle concentrations corrected for interaction effects. To give an example: If a particle concentration is
1019 cm–3, the activity might only be 5 · 1018 cm–3. If you use this factually wrong number, simple equations like
the Boltzmann distribution that do not take into account particle interactions can still be used.
If the activity numbers are very different from the real concentration numbers, you are no longer doing Materials
Science, but chemistry.
Using this, we obtain the general version of Nernst's law

∆U  =  –  
kT

z · e
  ·  ln 

a1

a2
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Nernsts law, being the Boltzmann distribution in disguise, is of course extremely general. It gives the potential difference
and thus the voltage of any contact between two materials that have sufficiently large concentrations of mobile carriers
so that an equilibrium distribution can develop. It describes, among other things

The contact voltage (Volta potential) between two metals (i.e. thermocouples).

The built-in potential in pn-junctions

The voltage of any battery or accumulator.

The voltage of fuel cells.

The voltage produced by certain kinds of sensors.

The last issue merits some brief explanation. Let's assume a material with a sufficiently large concentration of mobile
O– ions at interstitial sites (in other word, mobile interstitial point defects) at the working temperature - take Y2O3
stabilized ZrO2 as an example (whatever that may be).

Use it to measure the amount of oxygen in a given gas mixture with the following oxygen sensor device:

The sensor material experiences two different oxygen concentrations on its two surfaces, one of which is known
(oxygen in air, a constant for all practical purposes), the other one is the concentration in the exhaust gas of a car which
is supposed to be measured by the voltmeter

Two gas-permeable electrodes have been supplied which allow oxygen on both sides to react with the sensor
material.

In equilibrium, we will have some reaction between the oxygen in the gas and the oxygen in the crystal in the sense that
oxygen will either come out, or diffuse into the material.

What we might expect is that the concentration of interstitial oxygen in the crystal will be larger near to the surface
with the large oxygen gas concentration (air) compared to the surface exposed to a lower oxygen concentration
(exhaust).
The gradient in the (negatively charged) oxygen concentration inside the material then will be determined by the
Debye length of the system (in the real thing, which is ZrO2, it will be just a few nm).
In total, the concentration [O]S of mobile O-interstitials right at the surface will be somehow tied to the partial
pressure pO  of the oxygen on both sides; lets say we have a general relation like

[O]S =  const. · pO



n

But any other (reasonable) relation you can think of will be just as good.

Nernst's law then tells us immediately, how the voltage between the two electrodes depends on the oxygen
concentration or partial pressure in the exhaust: For the assumed relation we have

∆U  =  –  
kT

e
  ·  ln 

c1

c2
    

∆U  =  –  
kT

e
  ·  ln 

(p1)n

(p2)n

    

∆U  =  –  
n · kT

e
  ·  ln 

p1

p2
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This is quite remarkable: We have an equation for the voltage that develops across some sensor as a function of the
difference of the oxygen concentration on two sides of the sensor without knowing much about the details of the
sensor! All we have to assume is that there is some mobile O–, no other free carriers, and that establishing
equilibrium does not take forever.
Only if you want to know the precise value of n do you have to delve into the detailed reactions at the interfaces.

This is essentially the working principle of not only the oxygen sensor in the exhaust system of any modern car ("λ -
Sonde"), but of most, if not all, solid state sensors.

Questionaire
Multiple Choice questions to all of 2.4
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2.5.4 Summary to: Ionic Conductors

Electrical current can conducted by ions in

Liquid electrolytes (like H2SO4 in your "lead - acid"
car battery); including gels
Solid electrolytes (= ion-conducting crystals).
Mandatory for fuel cells and sensors
Ion beams. Used in (expensive) machinery for
"nanoprocessing".

Challenge: Find / design a material
with a "good" ion conductivity at room
temperature

Basic principle  

Diffusion current jdiff driven by concentration gradients
grad(c) of the charged particles (= ions here)
equilibrates with the

jdiff  =  – D · grad(c)

jfield  = σ · E  =  q · c · µ · EField current jfield caused by the internal field always
associated to concentration gradients of charged
particles plus the field coming from the outside

 

Diffusion coefficient D and mobility µ are linked via
theEinstein relation;
concentration c(x) and potential U(x) or field
E(x) = –dU/dxby the Poisson equation.

 
µ = eD/kT

–
d2U

dx2
 = 

dE

dx
 = 

e · c(x) 

εε0

     
Immediate results of the equations from above are:  

In equilibrium we find a preserved quantity, i.e. a
quantity independent of x - the electrochemical potential
Vec:

 
Vec  =  const.  =  e · U(x)  +  kT  · ln c(x)

If you rewrite the equaiton for c(x), it simply asserts that
the particles are distributed on the energy scale
according to the Boltzmann distrubution: c(x)  = exp – 

(Vx) – Vec

kT

Electrical field gradients and concentration gradients at
"contacts" are coupled and non-zero on a length scale
given by the Debye length dDebye

 

dDebye  =  




ε · ε0 · kT

e2 · c0





1/2

The Debye length is an extremely important material
parameter in "ionics" (akin to the space charge region
width in semiconductors); it depends on temperature T
and in particular on the (bulk) concentration c0 of the
(ionic) carriers.

 

The Debye length is not an important material
parameter in metals since it is so small that it doesn't
matter much.

 

 
The potential difference between two materials (her ionic
conductors) in close contact thus...

  

... extends over a length given (approximately) by :  
dDebye(1) + dDebye(2)

... is directly given by the Boltzmann distribution written
for the energy:
(with the ci =equilibrium conc. far away from the
contact.
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... is directly given by the Boltzmann distribution written
for the energy:
(with the ci =equilibrium conc. far away from the
contact.

 
c1

c2

 =  exp –
e · ∆U

kT
      Boltz-

mann 

∆U  =  –  
kT

e
  ·  ln 

c1

c2

      Nernst's
equation 

The famous Nernst equation, fundamental to ionics, is
thus just the Boltzmann distribution in disguise!

 

"Ionic" sensors (most famous the ZrO2 - based O2 sensor
in your car exhaust system) produce a voltage according to
the Nernst equation because the concentration of ions on
the exposed side depends somehow on the concentration of
the species to be measured.

  

  
  Questionaire

Multiple Choice questions to all of 2.5
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2.6 Summary: Conductors

What counts are the specific quantities:

Conductivity σ (or the specific resistivity ρ = 1/ σ
current density j
(Electrical) field strength · E

[ σ] = ( Ωm)–1 = S/m; S = 1/ Ω = "Siemens"
[ ρ] = Ωm

The basic equation for σ is:
n = concentration of carriers
µ = mobility of carriers

σ  =  |q| · n · µ

Ohm's law states:
It is valid for metals, but not for all materials

 
j  =   σ · E

   
σ (of conductors / metals) obeys (more or less) several rules;
all understandable by looking at n and particularly µ.

 

Matthiesen rule
Reason: Scattering of electrons at defects (including
phonons) decreases µ.

 
ρ =  ρLattice(T) + ρdefect(N)

"ρ(T) rule":
about 0,04 % increase in resistivity per K
Reason: Scattering of electrons at phonons decreases µ

 

∆ρ  =  αρ · ρ · ∆Τ  ≈ 
0,4%

oC

Nordheim's rule:
Reason: Scattering of electrons at B atoms decreases µ

 
ρ  ≈   ρA + const. · [B]

     
Major consequence: You can't beat the conductivity of pure
Ag by "tricks" like alloying or by using other materials.
(Not considering superconductors).

    
Non-metallic conductors are extremely important.   

Transparent conductors (TCO's)
("ITO", typically oxides)

 
No flat panels displays = no
notebooks etc. without ITO!

Batteries, fuel cells, sensors, ...

Example: MoSi2 for heating elements
in corrosive environments
(dishwasher!).

The future High-Tech key materials?

Ionic conductors (liquid and solid)  

Conductors for high temperature applications; corrosive
environments, ..
(Graphite, Silicides, Nitrides, ...)

 

Organic conductors (and semiconductors)  

     
Numbers to know (order of magnitude accuracy sufficient)  

ρ(decent metals) about 2 μΩcm
ρ(technical semiconductors)
around 1 Ωcm
ρ(insulators) > 1 GΩcm

  

Advanced Materials B, part 1 - script - Page 58



No electrical engineering without conductors!
Money, Chemistry (try Na!),
Mechanical and Thermal properties,
Compatibility with other materials,
Compatibility with production
technologies, ...

Hundreds of specialized metal alloys exist just for "wires"
because besides σ, other demands must be met, too:

 

Example for unexpected conductors being "best" compromise:
Poly Si, Silicides, TiN, W in
integrated circuits

   
Don't forget Special Applications:  

Contacts (switches, plugs, ...);
Resistors;
Heating elements; ...

    

Thermionic emission provides electron beams.
The electron beam current (density) is given by the Richardson
equation: j  =  A · T 2 · exp –

EA

kTAtheo = 120 A · cm–2 · K–2 for free electron gas model
Aexp ≈ (20 - 160) A · cm–2 · K–2

EA = work function ≈ (2 - >6) eV  

Materials of choice: W, LaB6 single crystal  

High field effects (tunneling, barrier lowering) allow large currents at
low T from small (nm) size emitter

 Needs UHV!

    
There are several thermoelectric effects for metal junctions; always
encountered in non-equilibrium.

  

Seebeck effect:
Thermovoltage develops if a metal A-metal B junction is at a
temperature different form the "rest", i.e. if there is a
temperature gradeient

Essential for measuring (high)
temperatures with a "thermoelement"
Future use for efficient conversion of
heat to electricity ???

Peltier effect:
Electrical current I through a metal - metal (or metal -
semiconductor) junction induces a temperature gradient ∝ I, i.e.
one of the junction may "cool down".

 
Used for electrical cooling of
(relatively small) devices. Only big
effect if electrical heating (∝ I2) is
small.

     

Electrical current can conducted by ions in

Liquid electrolytes (like H2SO4 in your "lead - acid"
car battery); including gels
Solid electrolytes (= ion-conducting crystals).
Mandatory for fuel cells and sensors
Ion beams. Used in (expensive) machinery for
"nanoprocessing".

Challenge: Find / design a material
with a "good" ion conductivity at room
temperature

Basic principle  

Diffusion current jdiff driven by concentration gradients
grad(c) of the charged particles (= ions here)
equilibrates with the

jdiff  =  – D · grad(c)

jfield  = σ · E  =  q · c · µ · EField current jfield caused by the internal field always
associated to concentration gradients of charged
particles plus the field coming from the outside
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Diffusion coefficient D and mobility µ are linked via
theEinstein relation;
concentration c(x) and potential U(x) or field
E(x) = –dU/dxby the Poisson equation.

 
µ = eD/kT

–
d2U

dx2
 = 

dE

dx
 = 

e · c(x) 

εε0

     
Immediate results of the equations from above are:  

In equilibrium we find a preserved quantity, i.e. a
quantity independent of x - the electrochemical potential
Vec:

 
Vec  =  const.  =  e · U(x)  +  kT  · ln c(x)

If you rewrite the equaiton for c(x), it simply asserts that
the particles are distributed on the energy scale
according to the Boltzmann distrubution: c(x)  = exp – 

(Vx) – Vec

kT

Electrical field gradients and concentration gradients at
"contacts" are coupled and non-zero on a length scale
given by the Debye length dDebye

 

dDebye  =  




ε · ε0 · kT

e2 · c0





1/2

The Debye length is an extremely important material
parameter in "ionics" (akin to the space charge region
width in semiconductors); it depends on temperature T
and in particular on the (bulk) concentration c0 of the
(ionic) carriers.

 

The Debye length is not an important material
parameter in metals since it is so small that it doesn't
matter much.

 

 
The potential difference between two materials (her ionic
conductors) in close contact thus...

  

... extends over a length given (approximately) by :  
dDebye(1) + dDebye(2)

... is directly given by the Boltzmann distribution written
for the energy:
(with the ci =equilibrium conc. far away from the
contact.

 
c1

c2

 =  exp –
e · ∆U

kT
      Boltz-

mann 

∆U  =  –  
kT

e
  ·  ln 

c1

c2

      Nernst's
equation 

The famous Nernst equation, fundamental to ionics, is
thus just the Boltzmann distribution in disguise!

 

"Ionic" sensors (most famous the ZrO2 - based O2 sensor
in your car exhaust system) produce a voltage according to
the Nernst equation because the concentration of ions on
the exposed side depends somehow on the concentration of
the species to be measured.

  

Questionaire
All multiple choice questions zu 2.

Conductors
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3. Dielectrics

3.1 Definitions and General Relations

3.1.1 Polarization and Dielectric Constant

3.1.2 Summary to: Polarization and Dielectric Constant

3.2 Mechanisms of Polarization

3.2.1 General Remarks

3.2.2 Electronic Polarization

3.2.3 Ionic Polarization

3.2.4 Orientation Polarization

3.2.5 Summary and Generalization

3.2.6 Local Field and Clausius - Mosotti Equation

3.2.7 Summary to: Polarization Mechanisms

3.3 Frequency Dependence of the Dielectric Constant

3.3.1 General Remarks

3.3.2 Dipole Relaxation and Dielectric Function

3.3.3 Resonance for Ionic and Atomic Polarization

3.3.4 Complete Frequency Dependence of a Model Material

3.3.5 Summary to: Frequency Dependence of the Dielectric Constant

3.4. Dynamic Properties

3.4.1 Dielectric Losses

3.4.2 Summary to: Dynamic Properties - Dielectric Losses

3.5 Electrical Breakdown and Failure

3.5.1 Observation of Electrical Breakdown and Failure

3.5.2 Mechanisms of Electrical Breakdown

3.5.3 Summary to: Electrical Breakdown and Failure

3.6 Special Dielectrics

3.6.1 Piezo Electricity and Related Effects

3.6.2 Ferro Electricity
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3.6.3 Summary to: Special Dielectrics

3.7 Summary: Dielectrics

Advanced Materials B, part 1 - script - Page 62



3. Dielectrics

3.1 Definitions and General Relations

3.1.1 Polarization and Dielectric Constant

For the sake of simplicity we assume that dielectric materials are perfect insulators. In other words, there are no
mobile charged particles.
We want now to be able to answer three questions:

1. Given the atomic structure of the material - What is its dielectric constant (DK)?

2. How does the DK depend on the frequency of the external field?

3. How large is the maximum field strength a dielectric can take? Remember, no material can take arbitrarily large
loads - mechanical, electical, whatever.

For starters, we look at some general descriptions, definitions and general relations of the quantities necessary in this
context.

The dielectric constant of solids is an interesting material parameter only if the material is exposed to an electrical field
(and this includes the electrical field of an electromagnetic wave). The effect of the electrical field (or just field for
short from now on) can be twofold:

1. It induces electrical dipoles in the material and tries to align them in the field direction. In other words, with a field,
dipoles come into being that do not exist without a field.
2. It tries to align dipoles that are already present in the material. In other words, the material contains electric
dipoles even without a field.

Of course we also may have a combination of both effects: The electrical field may change the distribution of existing
dipoles while trying to align them, and it may generate new dipoles in addition.
The total effect of an electrical field on a dielectric material is called the polarization of the material.

To understand that better, lets look at the most simple object we have: A single atom (we do not even consider
molecules at this point).

We have a positively charged nucleus and the electron "cloud". The smeared-out negative charge associated with
the electron cloud can be averaged in space and time, and its charge center of gravity than will be at a point in
space that coincides exactly with the location of the nucleus, because we must have spherical symmetry for atoms.
If we now apply an electrical field, the centers of charge will be separated. The electron cloud will be pulled in the
direction of the positive pole of the field, the nucleus to the negative one. We may visualize that (ridiculously
exaggerated) as follows:

The center of the positive and negative charges q (= z · e) are now separated by a distance ξ, and we thus induced
a dipole moment μ which is defined by

μ  =  q · ξ

It is important to understand that μ is a vector because ξ is a vector. The way we define it, its tip will always point
towards the positive charge. For schematic drawings we simply draw a little arrow for μ.

The magnitude of this induced dipole moment is a property of our particular atom, or, if we generalize somewhat, of the
"particles" or building blocks of the material we are studying.
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In order to describe the bulk material - the sum of the particles - we sum up all individual dipole moments contained
in the given volume of the material and divide this sum by the volume V. This gives us the (volume independent)
polarization P of the material. Notice that we have a vector sum!

P  = 
Σ μ

V
  = <μ> · N V

With <μ> = average vector dipole moment; NV = density of dipoles (per m3).

P thus points from the negative to the positive charge, too - a convention opposite to that used for the electrical
field.
The physical dimension of the polarization thus is C/m2; (Coulomb per square meter). i.e. the polarization has the
dimension of an area charge, and since μ is a vector, P is a vector, too.

It is important to realize that a polarization P = 0 does not mean that the material does not contain dipole moments, but
only that the vector sum of all dipole moments is zero.

This will always be the case if the dipole moment vectors are randomly distributed with respect to their directions.
Look at the picture in one of the next subchapters if you have problems visualizing this. But it will also happen if
there is an ordered distribution with pairs of opposing dipole moments; again contemplate a picture in one of the
following subchapters if that statment is not directly obvious.

That P has the dimension of C/cm2, i.e. that of an area charge, is not accidental but has an immediate interpretation.

To see this, let us consider a simple plate capacitor or condenser with a homogeneously polarized material inside
its plates. More generally, this describes an isotropic dielectric slab of material in a homogeneous electrical field.
We have the following idealized situation:

For sake of simplicity, all dipole moments have the same direction, but the subsequent reasoning will not change if
there is only an average component of P in field direction. If we want to know the charge density ρ  inside a small
probing volume, it is clearly zero in the volume of the material (if averaged over probing volumes slightly larger than
the atomic size), because there are just as many positive as negative charges.
We are thus left with the surfaces, where there is indeed some charge as indicated in the schematic drawing. At
one surface, the charges have effectively moved out a distance ξ , at the other surface they moved in by the same
amount. We thus have a surface charge, called a surface polarization charge, that we can calculate.
The number Nc of charges appearing at a surface with area A is equal to the number of dipoles contained in the
surface "volume" VS = A · ξ times the relevant charge q of the dipole. Using ξ to define the volume makes sure that
we only have one layer of dipoles in the volume considered.
Since we assume a homogeneous dipole distribution, we have the same polarization in any volume and thus P = Σμ
/ V = ΣμS / VS obtains. Therefore we can write

P  =  
ΣV  μ

V
 = 

ΣS  μ

VS

 = 
ξ · Σ S q

VS

 =  
ξ · ΣS q

ξ · A
 =  

ΣS q

A

   
ΣS q   =  Nc = P · A 

ΣV or ΣS denotes that the summation covers the total volume or the "surface" volume. Somewhere we "lost" the
vector property of P, but that only happens because we automatically recognize ξ as being perpendicular to the
surface in question.
While this is a certain degree of sloppiness, it makes life much easier and we will start to drop the underlining of
the vectors from now on whenever it is sufficiently clear what is meant.
The area density σpol of the charge on the surface is then
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σpol  = 
Nc

A
 = 

P · A

A
 = |P|

Of course, σpol is a scalar, which we obtain if we consider P · A to be the scalar product of the vector P and the
vector A; the latter being perpendicular to the surface A with magnitude |A| = A.

In purely electrical terms we thus can always replace a material with a homogeneous polarization P by two surfaces
perpendicular to some direction, - lets say z - with a surface charge density of Pz (with, of course, different signs on the
two different surfaces).

If the polarization vector is not perpendicular to the surface we chose, we must take the component of the
polarization vector parallel to the normal vector of the surface considered . This is automatically taken care of if we
use the vector formulation for A.

A dielectric material now quite generally reacts to the presence of an electrical field by becoming polarized and this is
expressed by the direction and magnitude of P.

P is a measurable quantity tied to the specific material under investigation. We now need a material law that
connects cause and effect, i.e. a relation between the the electrical field causing the polarization and the amount of
polarization produced.
Finding this law is of course the task of basic theory. But long before the proper theory was found, experiments
supplied a simple and rather (but not quite) empirical "law":

If we measure the polarization of a material, we usually find a linear relationship between the applied field E and P, i.e.

P  =  ε0 · χ · E

With the proportionality constant chosen to contain ε0, the permittivity constant (of vacuum), times a material
parameter χ ("kee"), the dielectric susceptibility.
Note that including ε0 in the relation is a convention which is useful in the SI system, where charges are always
coupled to electrical fields via ε0. There are other systems, however, (usually variants of the cgs system), which are
still used by many and provide an unending source of confusion and error.
This equation is to dielectric material what Ohms law is to conductors. It is no more a real "law of nature" than
Ohms law, but a description of many experimental observations for which we will find deeper reasons forthwith.

Our task thus is to calculate χ from basic material parameters.

 

Connection between the Polarization P and the Electrical Displacement D
  

Next we need the connection between the polarization P, or the dielectric susceptibility χ, with some older quantities
often used in connection with Maxwells equations.

Historically, inside materials, the electrical field strength E was (and still is) replaced by a vector D called the
electrical displacement or electrical flux density, which is defined as

D = εr · ε0 · E

and εr was (and still is) called the (relative) dielectric constant (DK) of the material (the product εr · ε0 is called
the permittivity).
Note that in the English literature often the abbreviation κ ("Kappa") is used; in proper microelectronics slang one
than talks of "low k materials" (pronounced "low khe" as in (O)K) when one actually means "low kappa" or "low
epsilon relative".
D is supposed to give the "acting" flux inside the material.

While this was a smart thing to do for Maxwell and his contemporaries, who couldn't know anything about materials
(atoms had not been "invented" then); it is a bit unfortunate in retrospect because the basic quantity is the polarization,
based on the elementary dipoles in the material, and the material parameter χ describing this - and not some changed
"electrical flux density" and the relative dielectric constant of the material.

It is, however, easy (if slightly confusing) to make the necessary connections. This is most easily done by looking
at a simple plate capacitor. A full treatise is found in a basic module, here we just give the results.

The electric displacement D in a dielectric caused by some external field Eex is the displacement D0 in vacuum plus
the polarization P of the material, i.e.
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D  =  D0 + P   =  ε0 · E  +  P

Inserting everything we see that the relative dielectric constant εr is simply the dielectric susceptibility χ plus 1.

εr  = 1 + χ 

For this "translations" we have used the relation P = ε0 · χ · E, which is not an a priori law of nature, but an empirical
relation. However, we are going to prove this relation for specific, but very general cases forthwith and thus justify the
equations above.

We have also simply implied that P is parallel to E, which is only reasonable for isotropic materials.

In anisotropic media, e.g. non-cubic crystals, P does not have to be parallel to E, the scalar quantities εr and χ then
are tensors. As before in the case of the electrical conductivity, the polarization and the dielectric displacement
then are no longer parallel to the electrical field
Note right now that this is not an exotic curiosty but a major fact of life for Material Scientists and Engineers. Major
industries growing rapidly at present, are based on the anisotropy of the dielctric behavior.

 
The basic task in the materials science of dielectrics is now to calculate (the tensor) χ from "first principles", i.e. from
basic structural knowledge of the material considered. This we will do in the following paragraphs.

  
Questionaire

Multiple Choice questions to 3.1.1
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3.1.2 Summary to: Polarization and Dielectric Constant

The dielectric constant εr "somehow" describes the interaction of
dielectric (i.e. more or less insulating) materials and electrical fields;
e.g. via the equations ⇒

D  = ε0 · εr  · E

C  = 
ε0 · εr · A

d

n  = (εr)½

D is the electrical displacement or electrical flux density,
sort of replacing E in the Maxwell equations whenever materials
are encountered.
C is the capacity of a parallel plate capacitor (plate area A,
distance d) that is "filled" with a dielectric with εr

 

n is the index of refraction; a quantity that "somehow" describes
how electromagnetic fields with extremely high frequency
interact with matter.
in this equaiton it is assumed that the material has no magnetic
properties at the frequency of light.

 

     
Electrical fields inside dielectrics polarize the material, meaning that
the vector sum of electrical dipoles inside the material is no longer
zero.

  

The decisive quantities are the dipole moment µ, a vector, and
the Polarization P, a vector, too.

 
μ  =  q · ξ

P  = 
Σµ

V

Note: The dipole moment vector points from the negative to the
positive charge - contrary to the electrical field vector!

 

The dipoles to be polarized are either already present in the
material (e.g. in H2O or in ionic crystals) or are induced by the
electrical field (e.g. in single atoms or covalently bonded
crystals like Si)

 

The dimension of the polarization P is [C/cm2] and is indeed
identical to the net charge found on unit area ion the surface of a
polarized dielectric.

 

     
The equivalent of "Ohm's law", linking current density to field
strength in conductors is the Polarization law: P  =  ε0 · χ · E

εr  = 1 + χ 

D  =  D0 + P   =  ε0 · E  +  P

The decisive material parameter is χ ("kee"), the dielectric
susceptibility

 

The "classical" flux density D and the Polarization are linked as
shown. In essence, P only considers what happens in the
material, while D looks at the total effect: material plus the field
that induces the polarization.

 

    
Polarization by necessity moves masses (electrons and / or atoms)
around, this will not happen arbitrarily fast.

εr or χ thus must be functions of the frequency of the applied
electrical field, and we want to consider the whole frequency
range from RF via HF to light and beyond.

 
εr(ω) is called the "dielectric

function" of the material.

The tasks are:

Identify and (quantitatively) describe the major mechanisms
of polarization.
Justify the assumed linear relationship between P and χ.
Derive the dielectric function for a given material.

  

  
Questionaire

Multiple Choice questions to all of 3.1
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3.2 Mechanisms of Polarization

3.2.1 General Remarks

We have a material and we want to know its dielectric constant εr or dielectric susceptibility χ. We would want to have
those quantities as functions of various variables for the same basic materials, e.g.

χ = χ (ω),
i.e. χ as a function of the angular frequency ω of the electrical field.
χ = χ (Τ);
i.e. the dependence on the temperature T.
χ = χ(structure),
i.e. the dependence of χ on the structure of a material including the kind and density of defects in the material. As
an example we may ask how χ differs from amorphous to crystalline quartz (SiO2).

The answers to all of these questions must be contained in the mechanisms with which atoms and molecules respond
to an electrical field, i.e. in the mechanisms leading to the formation and/or orientation of dipoles. These mechanisms
are called polarization mechanisms.

We want a general theory of polarization. This is a complex task as well it must be, given the plethora of dielectric
phenomena. However, the basic principles are rather simple, and we are only going to look at these.

There are essentially four basic kinds of polarization mechanisms:

Interface polarization.
Surfaces, grain boundaries, interphase boundaries (including the surface of precipitates) may be charged, i.e. they
contain dipoles which may become oriented to some degree in an external field and thus contribute to the
polarization of the material.
Electronic polarization,
also called atom or atomic polarization. An electrical field will always displace the center of charge of the
electrons with respect to the nucleus and thus induce a dipole moment as discussed before. The paradigmatic
materials for the simple case of atoms with a spherical symmetry are the noble gases in all aggregate forms.
Ionic polarization.
In this case a (solid) material must have some ionic character. It then automatically has internal dipoles, but these
built-in dipoles exactly cancel each other and are unable to rotate. The external field then induces net dipoles by
slightly displacing the ions from their rest position. The paradigmatic materials are all simple ionic crystals like
NaCl.
Orientation polarization.
Here the (usually liquid or gaseous) material must have natural dipoles which can rotate freely. In thermal
equilibrium, the dipoles will be randomly oriented and thus carry no net polarization. The external field aligns these
dipoles to some extent and thus induces a polarization of the material. The paradigmatic material is water, i.e. H2O
in its liquid form.

Some or all of these mechanisms may act simultaneously. Atomic polarization, e.g., is always present in any material
and thus becomes superimposed on whatever other mechanism there might be.

Real materials thus can be very complicated in their dielectric behavior. In particular, non-spherical atoms (as, e.g.,
Si in a crystal with its four sp3 orbitals) may show complex electronic polarization, and mixtures of ionic and
covalent bonding (e.g. in SiO2, which has about equal ionic and covalent bonding contributions) makes calculations
even more difficult. But the basic mechanisms are still the ones described above.

The last three mechanisms are amenable to basic considerations and calculations; interface polarization, however,
defies basic treatment. There is simply no general way to calculate the charges on interfaces nor their contribution to
the total polarization of a material.

Interface polarization is therefore often omitted from the discussion of dielectric properties. Here, too, we will not
pursue this matter much further.
It would be totally wrong, however, to conclude that interface polarization is technically not important because, on
the one hand, many dielectrics in real capacitors rely on interface polarization while, on the other hand, interface
polarization, if present, may "kill" many electronic devices, e.g. the MOS transistor!
Let's look at this in an exercise:

Exercise 3.2-2
Maximum polarization of water
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Questionaire
Multiple Choice questions to 3.2.1
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3.2.2 Electronic Polarization

For calculating the effect of electronic polarization, We consider an idealized atom with perfect spherical symmetry.

 
It has a point like charge + ze in the nucleus, and

The exact opposite charge – ze homogeneously distributed in the volume of the atom,
which is
 

 

V  =  
4

3
πR3

   
 With R = radius of the atom

 

The charge density ρ of the electrons then is

ρ  =  – 
3z · e 

4π · R3

In an electrical field E a force F1 acts on charges given by

F1  =  z · e · E

We will now drop the underlining for vectors and the mauve color for the electrical field strength E for easier
readability.

The positive charge in the nucleus and the center of the negative charges from the electron "cloud" will thus experience
forces in different direction and will become separated. We have the idealized situation shown in the image above.
The separation distance d will have a finite value because the separating force of the external field is exactly balanced
by the attractive force between the centers of charge at the distance d.

How large is his attractive force? It is not obvious because we have to take into account the attraction between a
point charge and homogeneously distributed charge.
The problem is exactly analogous to the classical mechanical problem of a body with mass m falling through a
hypothetical hole going all the way from one side of the globe to the other.
We know the solution to that problem: The attractive force between the point mass and the earth is equal to the
attractive force between two point masses if one takes only the mass of the volume inside the sphere given by the
distance between the center of the spread-out mass and the position of the point mass.
Knowing electrostatics, it is even easier to see why this is so. We may divide the force on a charged particles on
any place inside a homogeneously charged sphere into the force from the "inside" sphere and the force from the
hollow "outside" sphere. Electrostatics teaches us, that a sphere charged on the outside has no field in the inside,
and therefore no force (the principle behind a Faraday cage). Thus we indeed only have to consider the "charge
inside the sphere.

For our problem, the attractive force F2 thus is given by

F2  =  
q(Nucleus) · q(e in d)

4π ε 0 · d 2

with q(Nucleus) = ze and q(e in d) = the fraction of the charge of the electrons contained in the sphere with radius
d, which is just the relation of the volume of the sphere with radius d to the total volume . We have
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q(e in d)  =   ze ·
(4/3) π · d 3

(4/3) π · R 3
  =  

ze · d 3

R 3

and obtain for F2:

F2  =  




(ze) 2

4 πε0 · R 3





· d

We have a linear force law akin to a spring; the expression in brackets is the "spring constant". Equating F1 with F2
gives the equilibrium distance dE.

dE  =  
4 πε0 · R 3 · E

ze

Now we can calculate the induced dipole moment μ, it is

μ  =  ze · dE  =  4 πε0 · R 3 · E

The polarization P finally is given by multiplying with N, the density of the dipoles; we obtain

P  =  4 π · N · ε0 · R 3 · E

Using the definition P = ε0 · χ · E we obtain the dielectric susceptibility resulting from atomic polarization, χatom

χatom  =  4 π · N · R 3

Let's get an idea about the numbers involved by doing a simple exercise:

Exercise 3.2-3
Some numbers for atomic polarization

This is our first basic result concerning the polarization of a material and its resulting susceptibility. There are a number
of interesting points:

We justified the "law" of a linear relationship between E and P for the electronic polarization mechanism (sometimes
also called atomic polarization).
We can easily extend the result to a mixture of different atoms: All we have to do is to sum over the relative
densities of each kind of atom.
We can easily get an order of magnitude for χ. Taking a typical density of N ≈ 3 · 1019 cm– 3 and R ≈ 6 · 10– 9 cm,
we obtain

χ ≈ 8,14 · 10– 5,     or

εr = 1, 000 0814

In words: the electronic polarization of spherical atoms, while existent, is extremely weak. The difference to vacuum is at
best in the promille range.
Concluding now that electronic polarization is totally unimportant, would be premature, however. Atoms in crystals or in
any solids do not generally have spherical symmetry. Consider the sp3 orbital of Si, Ge or diamond.

Without a field, the center of the negative charge of the electron orbitals will still coincide with the core, but an
external field breaks that symmetry, producing a dipole momentum.
The effect can be large compared to spherical s-orbitals: Si has a dielectric constant (DK) of 12, which comes
exclusively from electronic polarization! Some values for semiconductors are given in the link.
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Questionaire
Multiple Choice questions to 3.2.2
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3.2.3 Ionic Polarization

Consider a simple ionic crystal, e.g. NaCl.

The lattice can be considered to consist of Na+ - Cl– dipoles as shown below.

 
Each Na+ - Cl– pair is a natural dipole, no matter how you pair up
two atoms.

The polarization of a given volume, however, is exactly zero
because for every dipole moment there is a neighboring one with
exactly the same magnitude, but opposite sign.

Note that the dipoles can not rotate; their direction is fixed.

  
In an electric field, the ions feel forces in opposite directions. For a field acting as shown, the lattice distorts a little bit
(hugely exaggerated in the drawing)
 

The Na+ ions moved a bit to the right, the Cl– ions to the left.

The dipole moments between adjacent NaCl - pairs in field
direction are now different and there is a net dipole moment in a
finite volume now.

   

From the picture it can be seen that it is sufficient to consider one dipole in field direction. We have the following
situation:

Shown is the situation where the distance between the ions increases by d; the symmetrical situation, where the
distance decreases by d, is obvious.

How large is d? That is easy to calculate:

The force F1 increasing the distance is given by

F1  =  q · E

With q = net charge of the ion.

The restoring force F2 comes from the binding force, it is given as the derivative of the binding potential. Assuming a
linear relation between binding force and deviation from the equilibrium distance d0, which is a good approximation
for d << d0, we can write

F2  =  kIP · d
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With kIP being the "spring constant" of the bond. kIP can be calculated from the bond structure, it may also be
expressed in terms of other constants that are directly related to the shape of the interatomic potential, e.g. the
modulus of elasticity or Youngs modulus.
If we do that we simply find

kIP  = Y  · d0  

With Y = Youngs Modulus, and d0 = equilibrium distance between atoms.

From force equilibrium. i.e. F1 – F2 = 0, we immediately obtain the following relations:

Equilibrium distance d

d  = 
q · E 

Y  · d0

Induced dipole moment μ (on top of the existing one)

μ  =  
q2 · E

Y  · d0

Polarization P

P  =  
N · q 2 · E

Y  · d0

Of course, this is only a very rough approximation for an idealized material and just for the case of increasing the
distance. Adding up the various moments - some larger, some smaller - will introduce a factor 2 or so; but here we only
go for the principle.
For real ionic crystals we also may have to consider:

More complicated geometries (e.g. CaF2, with ions carrying different amount of charge).

This example was deliberately chosen: The dielectric constant of CaF2 is of paramount interest to the
semiconductor industry of the 21st century, because CaF2 is pretty much the only usable material with an index of
refraction n (which is directly tied to the DK via εr = n2) that can be used for making lenses for lithography
machines enabling dimensions of about 0,1 μm.
If the field is not parallel to a major axis of the crystal (this is automatically the case in polycrystals), you have to
look at the components of μ in the field direction and average over the ensemble.

Still, the basic effects is the same and ionic polarization can lead to respectable dielectric constants εr or
susceptibilities χ.

Some values are given in the link.

 

Questionaire
Multiple Choice questions to 3.2.3
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3.2.4 Orientation Polarization

In the case of orientation polarization we have a material with built-in dipoles that are independent of each other, i.e.
they can rotate freely - in sharp contrast to ionic polarization.

The prime example is liquid water, where every water molecule is a little dipole that can have any orientation with
respect to the other molecules. Moreover, the orientation changes all the time because the molecules moves!
Orientation polarization for dielectric dipoles thus is pretty much limited to liquids - but we will encounter it in a
major way again for magnetic dipoles.
A two-dimensional "piece of water" may - very graphically - look somewhat like the picture below that captures one
particular moment in time. It is like a snapshot with a very, very short exposure time. A few nanoseconds later the
same piece of water may look totally different in detail, but pretty much the same in general.
In a three-dimensional piece of water the blue and red circles would not have to be in the same plane; but that is
easy to imagine and difficult to draw.

Shown is a bunch of water molecules that form natural dipoles because the negatively charged oxygen atom and
the two positively charged H - atoms have different centers of charge. Each molecule carries a dipole moment which
can be drawn as a vector of constant length. If we only draw a vector denoting the dipole moment, we get - in two
dimensions - a picture like this:

Again, remember that both pictures are "snap shots" that only appear unblurred for very small exposure times, say
picoseconds, because the dipoles wiggle, rotate, and move around rather fast, and that in three dimensions the
vectors would also point out of the drawing plane.

The total dipole moment is the vector sum of the individual dipole moments.

For dipoles oriented at random, at any given moment this looks like the picture below
if we draw all vectors from a common origin: The sum of all dipole moments will be
zero, if the dipoles are randomly oriented.

We can see this most easily if we have all dipoles start at the same origin. The
picture, of course, is two-dimensional and crossly simplified. There would be a lot
more (like 10 20) dipoles for any appreciable amount of water - you really will average
them to zero pretty well.

 
If we now introduce a field E, the dipoles would have a tendency to turn into the field because that would lower their
energy.

If you have problems with this statement, just imagine the electrostatic interaction, which will always try to move the
positive pole of the dipole towards the negative pole of the field, and vice versa for the negative pole - the dipole
would align itself exactly along a field line of the external field for minimum energy.
Naively, we would then expect a perfect orientation into the field and a concomitantly large polarization because
that would lead to the minimum of the dipole energy.
Well, water does have a pretty large DK of 81, so there is obviously some orientation into the field, but it is easy
(not really) to show (in an exercise) that this DK is several orders of magnitude too small for fully oriented dipole
moments at some normal field strengths.
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Exercise 3.2-1
Maximum polarization of water

In reality, the orientation into the field direction will be counteracted by random collisions with other dipoles, and this
process is energized by the thermal energy "kT" contained in the water.

Again, the dipoles are not sitting still, but moving around and rotating all the time - because they contain thermal
energy and thus also some entropy.
Whenever two molecules collide, their new orientation is random - all memory of an orientation that they might have
had in the electrical field is lost. This is analogous to what happens to electrons carrying an electrical current in an
electrical field.
The electrical field only induces a little bit of average orientation in field direction - most of the time an individual
dipole points in all kinds of directions. This is the simple truth even so some (undergraduate) text books show
pictures to the contrary. The "real" picture (in the sense of a snapshot with a very short exposure time) looks like
this:

Without field With field

The orientation of all dipoles is just a little bit shifted so that an average orientation in field direction results. In the
picture, the effect is even exaggerated!

In fact, the state of being liquid by necessity implies quite a bit of entropy, and entropy means disorder.

Perfectly aligned dipoles would be in perfect order without any entropy - this is only possible at extremely low
temperatures (and even there quantum theory would not allow it) where we will not have liquids any more, or more
generally, dipoles that are able to rotate freely.
In other words, we must look for the minimum of the free enthalpy G and not for the minimum of the internal
energy U. At finite temperatures the minimum of the free enthalpy requires some entropy S, i.e. randomness in
the dipole orientation, so we should not expect perfect orientation.

If you are not familiar with the basics of thermodynamics, you have a problem at this point. If you do know your
thermodynamics, but are a bit insecure, turn to the basic module "Thermodynamics" (in the "Defects" Hyperscript) to
refresh your memory.
We obviously need to calculate the free enthalpy G=U – TS to see what kind of average orientation will result in a given
field. Note that we use U, the common symbol for the (internal) energy instead of H, the common symbol for the
enthalpy, because U and H are practically identical for solids and liquids anyway.

Moreover, a mix up with the magnetic field strength usually designated by H, too, would be unavoidable otherwise.
(The possible mix-up between internal energy U and voltage U is not quite so dangerous in this context).

The internal energy od a dipole is clearly a function of its orientation with respect to the field. It must be minimal, when
the dipole is aligned with the field and thedipole moment has the same direction as the electrical field, and maximal if
the direction is reversed.

This is the easy part: The energy U(δ) of a dipole with dipole moment μ in a field E as a function of the angle δ
("delta") between the dipole moment direction and the field direction.
 

From basic electrostatics we have have

 

U(δ) = –  μ · E = –  |μ| · |E| · cos δ

The minimum energy U thus would occur for δ=0o, i.e. for perfect alignment in
proper field direction (note the minus sign!); the maximum energy for δ=180o,
i.e. for alignment the wrong way around.
That was for two dimensions - now we must look at this in three dimensions.
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In 3D we see that all dipoles with the same angle δ between their axis and the field still have the same energy - and
this means now all dipoles on a cone with opening angle 2δ around the field axis if we consider possible orientations
out of the plane of drawing.
In order to obtain the total internal energy Utotal of a bunch of dipoles having all kinds of angles δ with the field axis,
we will have to sum up all cones.
This means we take the number of dipoles N(δ) having a particular orientation δ times the energy belonging to that δ,
and integrate the resulting function over δ from 0o to 180o. This is something that we could do - if we would know
N(δ).

However, just calcuating Utotal will not be of much use. We also must consider the entropy term – TS, because we do
not want to calculate the total internal energy Utotal, but the total free enthalpy G=Utotal – TS.

We need to consider that term as a function of all possible angle distributions and then see for which distribution we
can minimize G.

But what is the entropy S(N(δ)) of an ensemble of dipoles containing N(δ) members at the angle δ as a function of the
many possible distribution N(δ)? Not an easy question to answer from just looking at the dipoles.

Fortunately, we do not have to calculate S explicitly!

We know a formula for the distribution of (classical) particles on available energy levels that automatically gives the
minimum of the free enthalpy!

We have a classical system where a number of independent particles (the dipoles) can occupy a number of energy
levels (between Umin and Umax) as defined by δ=0o or δ=180o, respectively.
Basic thermodynamics asserts that in equilibrium, the distribution of the particles on the available energy levels is
given by the proper distribution function which is defined in such a way that it always gives the minimum of the free
enthalpy.
Since we deal with classical particles in this approach, we have to use the Boltzmann distribution. We obtain for
N(U)= number of dipoles with the energy U

N(U) = A· exp –  
U(δ)

kT

With a constant A that has yet to be determined.

This Boltzmann distribution equation gives us the number of dipoles with a certain angle relative to the field direction, i.e.
the number of dipoles that have their tips on a circle with an opening angle 2δ relative to the field directions as shown
below.

We are, however, only interested in the component of the dipole moment parallel to the field. For this we look at the
solid angle increment dΩ defined on the unit sphere as the segment between δ and δ + dδ.
 

The number of dipoles lying in the cone angle increment defined by δ and δ+
∆δ is the same as the number of dipoles with tips ending on the surface of the
unit sphere in the incremental angle dΩ. It is given by
N(U(δ)) · dΩ.
Note that dΩ is a measure of an incremental area; a kind of ribbon once
around the unit sphere.
The sum of the components μF of the dipole moments in field direction is then
.

μF = (N · dΩ) · (μ · cos δ)
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If you are not familiar with spherical coordinates, this (and what we will do with it), looks a bit like magic. Since we
do not want to learn Math in this lecture, the essentials to spherical coordinates are explained in detail in a basic
module.

The average dipole moment, which is what we want to calculate, will now be obtained by summing up the contributions
from all the dΩs

<μF> = 

π
⌠
⌡
0

N(U(δ)) · μ · cosδ · dΩ

π
⌠
⌡
0

N(U(δ)) · dΩ

And the integrals have to be taken from the "top" of the sphere to the "bottom" , i.e. from 0 to π.

dΩ and δ are of course closely related, we simply have

dΩ = 2π · sinδ · dδ

Putting everything together, we obtain a pretty horrifying integral for μF that runs from 0 to π

<μF> = 

μ ·

π
⌠
⌡
0

sinδ · cosδ · exp  
μ · E · cosδ

kT
 · dδ

π
⌠
⌡
0

sinδ · exp 
μ · E · cosδ

kT
  · dδ

One advantage is that we got rid of the undetermined constant A. The integral, being a determined integral, is now
simply a number depending on the parameters of the system, i.e. the temperature T, the dipole moment μ and the field
strength E.

The problem has been reduced to a mathematical exercise in solving integrals.

Since we are not interested at doing math, we just show the general direction toward a solution:

Use the substitutions

β  = 
μ · E

kT
  

x = cos δ

The integral reduces to
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<μF> = 

μ ·

–1
⌠
⌡
+1

x · exp (β · x) · dx

–1
⌠
⌡
+1

exp (β · x) · dx

The final result after quite a bit of fiddling around is

<µF>=µ · L(β)

With L(β)=Langevin function, named after Paul Langevin, and defined as
.

L(β) = coth (β)  –  
1

β

β  = 
μ · E

kT y=coth x

The "coth" is the hyperbolic cotangent, defined as coth x=(ex + e–x)/(ex – e–x)=1/tanh x.

L(β) is a tricky function, because the coth x part looks pretty much like a hyperbola, from which the real hyperbola
1/x is subtracted. What's left is almost nothing - L(x) values are between 0 and 1

The polarization (always on average, too) is accordingly
.

P = N · <μ>

This is a definite result, but it does not help much. We need to discuss the mathematical construct "Langevin function
L(β)" to get some idea of what we obtained. We look at the graph in general units and in units of the dipole moment and
electrical field (in red).
 

Since β is proportional to the field strength E, we see that
the dipole moment and the polarization increases
monotonically with E, eventually saturating and giving
<µF>=µ which is what we must expect.

The question is, what range of β values is accessible for
real materials. i.e. how close to the saturation limit can we
get?

   
For that we look at some simple approximations.

If we develop L(β) into a series (consult a math textbook), we get
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L(β) = 
β

3
 –  

β3

45
 +  

2 β5

945
 –  .....

 
For large values of β we have L(β)  ≈  1, while for small values of β (β < 1), the Langevin function can be
approximated by .
 

L(β)  ≈  1/3 · β

 
The slope thus is 1/3 for β → 0.

For "normal" circumstances, we always have β << 1 (see below), and we obtain as final result for the induced
dipole moment the Langevin - Debye equation

<μF> = 
μ2 · E

3kT
   

<P>  = 
N · μ2 ·E

3kT

 
These equations will be rather good approximation for small values of μ and E and/or large values of T. For very large
fields and very small temperatures the average dipole moment would be equal to the built in dipole moment, i.e. all
dipoles would be strictly parallel to the field. This is, however, not observed in "normal" ranges of fields and
temperatures.

Lets see that in an example. We take

E=108 V/cm which is about the highest field strength imaginable before we have electrical breakdown,
μ=10–2 9 Asm, which is a large dipole moment for a strongly polarized molecule, e.g. for HCl, and
T=300 K.
This gives us
β=0,24 - the approximation is still valid. You may want to consult exercise 3.2-1 again (or for the first time) at this
point and look at the same question from a different angle.

At T=30 K, however, we have β=2,4 and now we must think twice:

1. The approximation would no longer be good. But

2. We no longer would have liquid HCl (or H2O, or liquid whatever with a dipole moment), but solid HCl (or whatever)
, and we now look at ionic polarization and no longer at orientation polarization!

You may now feel that this was a rather useless exercise - after all, who is interested in the DK of liquids? But consider:
This treatment is not restricted to electric dipoles. It is valid for all kinds of dipoles that can rotate freely, in particular for
the magnetic dipoles in paramagnetic materials responding to a magnetic field.

Again, you may react with stating "Who is interested in paramagnets? Not an electrical engineer!" Right - but the
path to ferromagnets, which definitely are of interest, starts exactly where orientation polarization ends; you cannot
avoid it.

It is important to be aware of the basic condition that we made at the beginning: there is no interaction between the
dipoles! This will not be true in general.

Two water molecules coming in close contact will of course "feel" each other and they may have preferred
orientations of their dipole moments relative to each other. In this case we will have to modify the calculations; the
above equations may no longer be a good approximation.
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On the other hand, if there is a strong interaction, we automatically have some bonding and obtain a solid - ice in
the case of water. The dipoles most likely cannot orientate themselves freely; we have a different situation (usually
ionic polarization). There are, however, some solids where dipoles exist that can rotate to some extent - we will get
very special effects, e.g. "ferroelectricity".

Questionaire
Multiple Choice questions to 3.2.4
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3.2.5 Summary and Generalization

 
For all three cases of polarization mechanisms, we had a linear relationship between the electrical field and the dipole
moment (for fields that are not excessively large):
 

Electronic polarization Ionic polarization Orientation polarization

μEP = 4π · ε0 · R3  ·  E μIP  =  
q2

kIP

 · E μop  =  
μ2

3kT 
  ·  E

It seems on a first glance that we have justified the "law" P = χ · E.

However, that is not quite true at this point. In the "law" given by equation above, E refers to the external field, i.e. to
the field that would be present in our capacitor without a material inside.
We have Eex = U / d for our plate capacitor held at a voltage U and a spacing between the plates of d.

On the other hand, the induced dipole moment that we calculated, always referred to the field at the place of the
dipole, i.e. the local field Eloc. And if you think about it, you should at least feel a bit uneasy in assuming that the
two fields are identical. We will see about this in the next paragraph.

Here we can only define a factor that relates µ and Eloc; it is called the polarizability α. It is rarely used with a number
attached, but if you run across it, be careful if ε0 is included or not; in other words what kind of unit system is used.

We now can reformulate the three equations on top of this paragraph into one equation

μ  =  α · Eloc

The polarizability α is a material parameter which depends on the polarization mechanism: For our three
paradigmatic cases they are are given by

αEP   = 4π · ε0 · R3  
    

αIP   = 
q2

kIP

 

    

αOP   = 
μ2

3kT
 

This does not add anything new but emphasizes the proportionality to E.

So we almost answered our first basic question about dielectrics - but for a full answer we need a relation between the
local field and the external field. This, unfortunately, is not a particularly easy problem

One reason for this is: Whenever we talk about electrical fields, we always have a certain scale in mind - without
necessarily being aware of this. Consider: In a metal, as we learn from electrostatics, there is no field at all, but that
is only true if we do not look too closely. If we look on an atomic scale, there are tremendous fields between the
nucleus and the electrons. At a somewhat larger scale, however, they disappear or perfectly balance each other
(e.g. in ionic crystals) to give no field on somewhat larger dimensions.
The scale we need here, however, is the atomic scale. In the electronic polarization mechanism, we actually
"looked" inside the atom - so we shouldn't just stay on a "rough" scale and neglect the fine details.

Nevertheless, that is what we are going to do in the next paragraph: Neglect the details. The approach may not be
beyond reproach, but it works and gives simple relations.
 

Advanced Materials B, part 1 - script - Page 82

http://www.tf.uni-kiel.de/matwis/amat/mw1_ge/kap_2/basics/b2_1_13.html


Questionaire
Multiple Choice questions to all of 3.2
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3.2.6 Local Field and Clausius - Mosotti Equation

"Particles", i.e. atoms or molecules in a liquid or solid are basking in electrical fields - the external field that we apply
from the outside is not necessarily all they "see" in terms of fields.

First, of course, there is a tremendous electrical field inside any atom. We have after all, positive charges and
negative charges separated by a distance roughly given by the diameter of the atom.
Second, we have fields between atoms, quite evident for ionic crystals, but also possible for other cases of bonding.

However, if you look at the materials at a scale somewhat larger than the atomic scale, all these fields must average to
zero. Only then do we have a field-free interior as we always assume in electrical engineering ("no electrical field can
penetrate a metal").
Here, however, we are looking at the effect an external field has on atoms and molecules, and it would be preposterous
to assume that what an atom "sees" as local electrical field is identical to what we apply from the outside.

Since all our equations obtained so far always concerned the local electrical field - even if we did not point that out
in detail before - we now must find a relation between the external field and the local field, if we want to use the
insights we gained for understanding the behavior of dielectrics on a macroscopic scale.

We define the local field Eloc to be the field felt by one particle (mostly an atom) of the material at its position (x,y,z).

Since the superposition principal for fields always holds, we may express Eloc as a superposition of the external
field Eex and some field Emat introduced by the surrounding material. We thus have

Eloc = Eex  +  Emat

All electrical fields can, in principle, be calculated from looking at the charge distribution ρ(x, y, z) in the material, and
then solving the Poisson equation (which you should know). The Poisson equation couples the charge distribution and
the potential V(x, y, z) as follows:

∆V  =  – 
ρ(x, y, z) 

ε · ε0

∆ = Delta operator  = 
∂2V

∂x2
  + 

∂2V

∂y2
 +  

∂2V

∂z2

The electrical field then is just the (negative) gradient of the potential; E = – ∇V.

Doing this is pretty tricky, however. We can obtain usable results in a good approximation in a much simpler way, by
using the time-honored Lorentz approach or the Lorentz model.

In this approach we decompose the total field into four components.

For doing this, we imagine that we remove a small sphere containing a few 10 atoms from the material. We want to
know the local field in the center of this sphere while it is still in the material; this is the local field Emat we are after.
We define that field by the force it exerts on a charge at the center of the sphere that acts as a "probe".

The essential trick is to calculate the field produced from the atoms inside the sphere and the field inside the now empty
sphere in the material. The total local field then is simple the sum of both.

Like always, we do not consider the charge of the "probe" in computing the field that it probes. The cut-out sphere
thus must not contain the charge we use as the field probe!
The cut-out material, in general, could produce an electrical field at its center since it is composed of charges. This
is the 1st component of the field, Enear which takes into account the contributions of the atoms or ions inside the
sphere. We will consider that field in an approximation where we average over the volume of the small sphere. To
make things clear, we look at an ionic crystal where we definitely have charges in our sphere.

Enear, however, is not the only field that acts on our probe. We must include the field that all the other atoms of the
crystal produce in the hollow sphere left after we cut out some material. This field now fills the "empty" void left by taking
out our sphere.

This field is called EL (the "L" stands for Lorentz); it compensates for the cut-out part - and that provides our 2nd
component.

Now we only have to add the "macroscopic" fields from 1. the polarization of the material and 2. the external field that
causes everything:

The field Epol is induced by the macroscopic polarization (i.e. by area charges equal to the polarization); it is the
3rd component.
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The external field Eex = U/d from the applied voltage at our capacitor which supplies the 4th component.

In a visualization, this looks like this:

The blue "sphere" cuts through the lattice (this is hard to draw). The yellow "point" is where we consider the local field;
we have to omit the contribution of the charged atom there. We now have

Eloc  =  Eex  +  Epol  +  EL  +  Enear

How large are those fields? We know the external field and also the field from the polarization (always assuming that the
material completely fills the space inside the capacitor).

Eex  =  
U

d
 Epol  =  – 

P 

ε0

We do not know the other two fields, and it is not all that easy to find out how large they are. The results one obtains,
however, are quite simple:

Lorentz showed that Enear = 0 for isotropic materials, which is easy to imagine. Thus for cubic crystals (or
polycrystals, or amorphous materials), we only have to calculate EL.

EL needs some thought. It is, however, a standard problem from electrostatics in a slightly different form.

In the standard problem one calculates the field in a materials with a DK given by εr that does not fill a rectangular
capacitor totally, but is in the shape of an ellipsoid including the extreme cases of a pure sphere, a thin plate or a
thin needle. The result is always

Eellipse  =  NP ·
P

εr · εo  

In words: The field inside a dielectric in the shape of an ellipsoid (of any shape whatsoever) that is put between the
parallel plates of a typical capacitor arrangement, is whatever it would be if the dielectric fills the space between the
plates completely times a number NP, the value of which depends on the geometry.

NP is the so-called depolarization factor, a pure number, that only depends on the shape of the ellipsoid. For the
extreme cases of the ellipsoid we have fixed and well-known depolarization factors:

Thin plate: N = 1
Needle: N = 0
Sphere: N = 1/3

.
Our case consists of having a sphere with εr = 1. We thus obtain

EL  =  
P

3εo
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We have now all components and obtain

Eloc  = 
U

d
  –  

P 

ε0

  +  
P 

3εo

U/d – P/ε0 is just the field we would use in the Maxwell equations, we call it E0. It is the homogeneous field
averaged over the whole volume of the homogeneous material
The local field finally becomes

Eloc  = E0   +  
P

3εo

This seems a bit odd? How can the local field be different from the average field?

This is one of the tougher questions one can ask. The answer, not extremely satisfying, comes from the basic fact
that all dipoles contribute to E0, whereas for the local field you discount the effect of one charge - the charge you
use for probing the field (the field of which must not be added to the rest!).
If you feel somewhat uneasy about this, you are perfectly right. What we are excluding here is the action of a
charge on itself. While we may do that because that was one way of defining electrical fields (the other one is
Maxwells equation defining a field as directly resulting from charges), we can not so easily do away with the energy
contained in the field of a single charge. And if we look at this, the whole theory of electromagnetism blows up! If the
charge is a point charge, we get infinite energy, and if it is not a point charge, we get other major contradictions.
Not that it matters in everyday aspects - it is more like a philosophical aspect. If you want to know more about this,
read chapter 28 in the "Feynman lectures, Vol. 2"

But do not get confused now! The relation given above is perfectly valid for everyday circumstances and ordinary matter.
Don't worry - be happy that a relatively complex issue has such a simple final formula!

We now can relate the macroscopic and microscopic parameters. With the old relations and the new equation we have
a grand total of:

µ  = α · Eloc
   
P  = N · α · Eloc
   

Eloc  = Eo +
P

3εo

From this we obtain quite easily

P   =  N · α · Eo  +  
P

3εo




P   =  
N · α · Eo

1 – N · α/3εo

With N = density of dipoles

Using the definition of P

P  =  εo · χ · E   =  εo · (εr – 1) · E
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and inserting it into the equations above gives as final result the connection between the polarizability α ( the
microscopic quantity) and the relative dielectric constant εr (the macroscopic quantity):

N · α 

3 ε0

     =     
εr – 1

εr + 2
   

 = 
χ

χ + 3

 
This is the Clausius - Mosotti equation, it relates the microscopic quantity α on the left hand side to the macroscopic
quantity εr (or, if you like that better, χ = εr – 1) on the right hand side of the equation. This has two far reaching
consequences

We now can calculate (at least in principle) the dielectric constants of all materials, because we know how to
calculate α.
We have an instrument to measure microscopic properties like the polarizability α, by measuring macroscopic
properties like the dielectric constant and converting the numbers with the Clausius-Mosotti equation.

You must also see this in an historical context: With the Clausius-Mosotti equation the dielectric properties of materials
were essentially reduced to known electrical properties. There was nothing mysterious anymore about the relative
dielectric constant. The next logical step now would be to apply quantum theory to dielectric properties.
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3.2.7 Summary to: Polarization Mechanisms

(Dielectric) polarization mechanisms in dielectrics are all
mechanisms that

Induce dipoles at all (always with µ in field direction)
⇒ Electronic polarization.

1.

Induce dipoles already present in the material to "point" to
some extent in field direction.
⇒ Interface polarization.
⇒ Ionic polarization.
⇒ Orientation polarization.

2.

Quantitative considerations of
polarization mechanisms yield

Justification (and limits) to
the P ∝ E "law"
Values for χ
χ = χ(ω)
χ = χ(structure)

   
Electronic polarization describes the separation of the centers of
"gravity" of the electron charges in orbitals and the positive charge
in the nucleus and the dipoles formed this way. it is always
present

It is a very weak effect in (more or less isolated) atoms or ions
with spherical symmetry (and easily calculated).

 

It can be a strong effect in e.g. covalently bonded materials
like Si (and not so easily calculated) or generally, in solids.

 

 
Ionic polarization describes the net effect of changing the distance
between neighboring ions in an ionic crystal like NaCl (or in
crystals with some ionic component like SiO2) by the electric field

Polarization is linked to bonding strength, i.e. Young's
modulus Y. The effect is smaller for "stiff" materials, i.e.
P ∝ 1/Y

     
Orientation polarization results from minimizing the free enthalpy of
an ensemble of (molecular) dipoles that can move and rotate
freely, i.e. polar liquids.

Without field With field

It is possible to calculate the effect, the result invokes the
Langevin function

 

  

L(β)  =  coth (β)  –  
1

β

 
In a good approximation the polarization is given by ⇒  

<P> =  
N · μ2 ·E

3kT
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The induced dipole moment µ in all mechanisms is proportional to
the field (for reasonable field strengths) at the location of the atoms
/ molecules considered.

 
μ  =  α · Eloc

The proportionality constant is called polarizability α; it is a
microscopic quantity describing what atoms or molecules "do"
in a field.

 

The local field, however, is not identical to the macroscopic or
external field, but can be obtained from this by the Lorentz
approach

 

Eloc  =  Eex  +  Epol  +  EL  +  Enear

 

For isotropic materials (e.g. cubic crystals) one obtains

  

EL  =  
P

3εo

 
Knowing the local field, it is now possible to relate the microscopic
quantity α to the macroscopic quantity ε or εr via the Clausius -
Mosotti equations ⇒

N · α 

3 ε0

     =     
εr – 1

εr + 2
   

 = 
χ

χ + 3

While this is not overly important in the engineering practice, it
is a momentous achievement. With the Clausius - Mosotti
equations and what went into them, it was possible for the first
time to understand most electronic and optical properties of
dielectrics in terms of their constituents (= atoms) and their
structure (bonding, crystal lattices etc.)

 

Quite a bit of the formalism used can be carried over to other
systems with dipoles involved, in particular magnetism =
behavior of magnetic dipoles in magnetic fields.

  
Questionaire

Multiple Choice questions to all of 3.1
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3.3 Frequency Dependence of the Dielectric Constant

3.3.1 General Remarks

All polarization mechanisms respond to an electrical field by shifting masses around. This means that masses must be
accelerated and de-accelerated, and this will always take some time. So we must expect that the (mechanical)
response to a field will depend on the frequency ν of the electrical field; on how often per second it changes its sign.

If the frequency is very large, no mechanical system will be able to follow. We thus expect that at very large
frequencies all polarization mechanisms will "die out", i.e. there is no response to an extremely high frequency field.
This means that the dielectric constant εr will approach 1 for ν ⇒ ∞.

It is best to consider our dielectric now as a "black box". A signal in the form of an alternating electrical field E goes in
at the input, and something comes out at the output, as shown below. Besides the Black Box scheme, two possible
real expressions of such an abstract system are shown: A parallel-plate capacitor containing a dielectric, and an optical
lens with an index of refraction n = εr. The input would be a simple alternating voltage in the capacitor case, and a light
wave in the lens case.

As long as our system is linear ("twice the input ⇒ twice the output), a sinewave going in will produce a sinewave
coming out, i.e. the frequency does not change.

If a sinewave goes in, the output then can only be a sinewave with an amplitude and a phase different from the input,
as schematically shown above.
If a complicated signal goes in, we decompose it into its Fourier components, consider the output for all frequencies
separately, and then do a Fourier synthesis.

With complex notation, the input will be something like Ein = Ein · exp(iωt); the output then will be
Eout = Eout · expi(ωt + φ).

We just as well could write Eout = f(ω) · Ein with f(ω) = complex number for a given ω or complex function of ω.

f(ω) is what we are after. We call this function that relates the output of a dielectric material to its input the
dielectric function of the material. As we will see, the dielectric function is a well-defined and very powerful entity
for any material - even if we cannot calculate it from scratch. We can however, calculate dielectric functions for
some model materials, and that will give us a very good idea of what it is all about.

Since the index of refraction n is directly given by εr1/2 (assuming that the material has no magnetic properties), we
have a first very general statement:

There exist no microscopes with "optical" lenses for very high frequencies of electrical fields, which means
electromagnetic radiation in the deep ultraviolet or soft X-rays. And indeed, there are no X-ray microscopes with
lenses1) (however, we still have mirrors!) because there are no materials with εr > 1 for the frequencies of X-rays.

Looking at the polarization mechanisms discussed, we see that there is a fundamental difference in the dynamics of the
mechanisms with regard to the response to changing forces:

In two cases (electron and ionic polarization), the electrical field will try to change the distance between the charges
involved. In response, there is a restoring force that is (in our approximation) directly proportional to the separation
distance of the dipole charges. We have, in mechanical terms, an oscillator.
The characteristic property of any such oscillating system is the phenomena of resonance at a specific frequency.

In the case of the orientation polarization, there is no direct mechanical force that "pulls" the dipoles back to random
orientation. Instead we have many statistical events, that respond in their average results to the driving forces of
electrical fields.
In other words, if a driving force is present, there is an equilibrium state with an (average) net dipole moment. If the
driving force were to disappear suddenly, the ensemble of dipoles will assume a new equilibrium state (random
distribution of the dipoles) within some characteristic time called relaxation time. The process knows no
resonance phenomena, it is characterized by its relaxation time instead of a resonance frequency.

We thus have to consider just the two basic situations: Dipole relaxation and dipole resonance. Every specific
mechanism in real materials will fit one of the two cases.
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1) Well, never say never. Lenses for X-rays do exist for a few years by now. However, if you would see the contraption, you
most likely wouldn't recognize it as a lens. If you want to know more, turn to the resarch of Prof. Lengeler and his group:
http://2b.physik.rtwh-aachen.de
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3.3.2 Dipole Relaxation and Dielectric Function

From Time Dependence to Frequency Dependence

The easiest way to look at relaxation phenomena is to consider what happens if the driving force - the electrical field in
our case - is suddenly switched off, after it has been constant for a sufficiently long time so that an equilibrium
distribution of dipoles could be obtained.

We expect then that the dipoles will randomize, i.e. their dipole moment or their polarization will go to zero.

However, that cannot happen instantaneously. A specific dipole will have a certain orientation at the time the field
will be switched off, and it will change that orientation only by some interaction with other dipoles (or, in a solid, with
phonons), in other words upon collisions or other "violent" encounters. It will take a characteristic time, roughly the
time between collisions, before the dipole moment will have disappeared.
Since we are discussing statistical events in this case, the individual characteristic time for a given dipole will be
small for some, and large for others. But there will be an average value which we will call the relaxation time τ of
the system. We thus expect a smooth change over from the polarization with field to zero within the relaxation time
τ, or a behavior as shown below

In formulas, we expect that P decays starting at the time of the switch-off according to

P(t)  =  P0 · exp –
t

τ

This simple equation describes the behavior of a simple system like our "ideal" dipoles very well. It is, however, not easy
to derive from first principles, because we would have to look at the development of an ensemble of interacting particles
in time, a classical task of non-classical, i.e. statistical mechanics, but beyond our ken at this point.

Nevertheless, we know that a relation like that comes up whenever we look at the decay of some ensemble of
particles or objects, where some have more (or less) energy than required by equilibrium conditions, and the
change-over from the excited state to the base state needs "help", i.e. has to overcome some energy barrier.
All we have to assume is that the number of particles or objects decaying from the excited to the base state is
proportional to the number of excited objects. In other words, we have a relation as follows:

dn

dt
  ∝  n  =   –  

1

τ
 · n

  

n   =   n0 · exp –  
t

τ
   

This covers for example radioactive decay, cooling of any material, and the decay of the foam or froth on top of your
beer: Bubbles are an energetically excited state of beer because of the additional surface energy as compared to a
droplet. If you measure the height of the head on your beer as a function of time, you will find the exponential law.

When we turn on an electrical field, our dipole system with random distribution of orientations has too much energy
relative to what it could have for a better orientation distribution.

The "decay" to the lower (free) energy state and the concomitant built-up of polarization when we switch on the field,
will follow our universal law from above, and so will the decay of the polarization when we turn it off.
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We are, however, not so interested in the time dependence P(t) of the polarization when we apply some disturbance or
input to the system (the switching on or off of the electrical field). We rather would like to know its frequency
dependence P(ω) with ω = 2πν = angular frequency, i.e. the output to a periodic harmonic input, i.e. to a field like
E = Eo · sinωt.

Since any signal can be expressed as a Fourier series or Fourier integral of sin functions as the one above, by
knowing P(ω) we can express the response to any signal just as well.

In other words: We can switch back and forth between P(τ) and P(ω) via a Fourier transformation.

We already know the time dependence P(τ) for a switch-on / switch-off signal, and from that we can - in principle -
derive P(ω).
We thus have to consider the Fourier transform of P(t). However, while clear in principle, details can become
nasty. While some details are given in an advanced module, here it must suffice to say that our Fouriertransform is
given by

P(ω)  =  

∞
⌠
⌡
0

P 0 · exp – 
t

τ
 · exp – (iωt ) · dt

P0 is the static polarization, i.e. the value of P(ω) for ω = 0 Hz , and i = (–1)1/2 is the imaginary unit (note that in
electrical engineering usually the symbol j is used instead of i).

This is an easy integral, we obtain

P(ω)  =  
P0

ω0  +  i · ω
  

ω0   =  
1

τ
 

Note that ω0 is not 2π/τ, as usual, but just 1/τ. That does not mean anything except that it makes writing the
formulas somewhat easier.

The P(ω) then are the Fourier coefficients if you describe the P(t) curve by a Fourier integral (or series, if you like that
better, with infinitesimally closely spaced frequency intervals).

P(ω) thus is the polarization response of the system if you jiggle it with an electrical field given by E = E0 · exp (iωt)
that contains just one frequency ω.
However, our Fourier coefficients are complex numbers, and we have to discuss what that means now.

 

Usimg Complex Numbers and Functions

Using the powerful math of complex numbers, we end up with a complex polarization. That need not bother us since by
convention we would only consider the real part of P when we are in need of real numbers.

Essentially, we are done. If we know the Amplitude (= E0) and (circle) frequency ω of the electrical field in the
material (taking into account possible "local field" effects), we know the polarization.

However, there is a smarter way to describe that relationship than the equation above, with the added benefit that this
"smart" way can be generalized to all frequency dependent polarization phenomena. Let's see how it is done:
What we want to do, is to keep our basic equation that couples polarization and field strength for alternating fields, too.
This requires that the susceptibility χ becomes frequency dependent. We then have

P(ω) = ε0 · χ(ω) · E(ω)

and the decisive factor, giving the amplitude of P(ω), is χ(ω).

The time dependence of P(ω) is trivial. It is either given by exp i(ωt – φ), with φ accounting for a possible phase shift,
or simply by exp i(ωt) if we include the phase shift in χ(ω), which means it must be complex.
The second possibility is more powerful, so that is what we will do. If we then move from the polarization P to the
more conventional electrical displacement D; the relation between D(ω) and E(ω) will require a complex dielectric
function instead of a complex susceptibiltiy, and that is the quantity we will be after from now on.

Advanced Materials B, part 1 - script - Page 93

http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_3/basics/b3_3_2.html
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_3/basics/b3_3_2.html
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_3/basics/b3_3_2.html
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_3/basics/b3_3_2.html
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_3/basics/b3_3_2.html
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_3/advanced/t3_3_3.html
http://www.tf.uni-kiel.de/matwis/amat/mw1_ge/kap_2/basics/b2_1_5.html


It goes without saying that for more complex time dependencies of the electrical field, the equation above holds for
every for every sin component of the Fourier series of an arbitrary periodic function.

Extracting a frequency dependent susceptibility χ(ω) from our equation for the polarization is fairly easy: Using the basic
equation we have

ε0 · χ(ω) = 
P(ω)

E(ω)
  =   

P0

E0

 · 
1

ω0  +  i · ω
  =   χs ·  

1

1  +  i · ω/ω0

χs = P0/ E0 is the static susceptibility, i.e. the value for zero frequency.

Presently, we are only interested in the real part of the complex susceptibility thus obtained. As any complex number,
we can decompose χ(ω) in a real and a imaginary part, i.e. write it as

χ(ω)  = χ'(ω)  +  i · χ''(ω)

with χ' and χ'' being the real and the imaginary part of the complex susceptibility χ . We drop the (ω) by now,
because whenever we discuss real and imaginary parts it is clear that we discuss frequency dependence).
All we have to do in order to obtain χ' and χ'' is to expand the fraction by 1  –  i · ω/ω0 which gives us

ε0 · χ(ω) = 
χs

1  +  (ω/ω0)2
  –  i  · 

χs · (ω/ω0)

1  +  (ω/ω0)2

We thus have for the real and imaginary part of ε0 · χ(ω), which is almost, but not yet quite the dielectric function
that we are trying to establish:

ε0 · χ'  = 
χs

1  +  (ω/ω0)2

   

– ε0 · χ'' = 
χs · (ω/ω0)

1  +  (ω/ω0)2

This is pretty good, because, as we will see, the real and imaginary part of the complex susceptibility contain an
unexpected wealth of material properties. Not only the dielectric behavior, but also (almost) all optical properties and
essentially also the conductivity of non-perfect dielectrics.
Before we proceed to the dielectric function which is what we really want to obtain, we have to makes things a tiny bit
more complicated - in three easy steps.

1. People in general like the dielectric constant εr as a material parameter far better than the susceptibility χ -
history just cannot be ignored, even in physics. Everything we did above for the polarization P, we could also have
done for the dielectric flux density D - just replace the letter "P" by "D" and "χ" by "εr" and we obtain a complex
frequency dependent dielectric constant εr(ω) = χ(ω)  +  1 with, of course, εs instead of χs as the zero frequency
static case.
2. So far we assumed that at very large frequencies the polarization is essentially zero - the dipole cannot follow and
χ(ω → ∞) = 0. That is not necessarily true in the most general case - there might be, after all, other mechanisms
that still "work" at frequencies far larger than what orientation polarization can take. If we take that into account, we
have to change our consideration of relaxation somewhat and introduce the new, but simple parameter χ(ω >> ω0) =
χ∞ or, as we prefer, the same thing for the dielectric "constant", i.e. we introduce εr(ω >> ω0) = ε∞ .
3. Since we always have either ε0 · χ(ω) or ε0 · ε(ω), and the ε0 is becoming cumbersome, we may just include it in
what we now call the dielectric function ε (ω) of the material. This simply means that all the εi are what they are
as the relative dielectric "constant" and multiplied with ε0

This reasoning follows Debye, who by doing this expanded our knowledge of materials in a major way. Going through
the points 1. - 3. (which we will not do here), produces the final result for the frequency dependence of the orientation
polarization, the so-called Debye equations:

In general notation we have pretty much the same equation as for the susceptibility χ; the only real difference is the
introduction of ε∞ for the high frequency limit:
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D(ω)  =  ε (ω)  · E(ω) =  




εs – ε∞

1 + i (ω/ω0)
 +  ε∞





·  E(ω)

The complex function ε (ω) is the dielectric function. In the equation above it is given in a closed form for the
dipole relaxation mechanism.

Again, we write the complex function as a sum of a real part and a complex part, i.e. as ε(ω) = ε'(ω) – i · ε''(ω). We use
a "–" sign, as a matter of taste; it makes some follow-up equations easier. But you may just as well define it with a +
sign and in some books that is what you will find. For the dielectric function from above we now obtain

ε'  =  ε∞  +  
εs – ε∞

1 + (ω/ω0)2

ε''  =  
(ω/ω0)(εs – ε∞)

1 + (ω/ ω0)2
 

As it must be, we have

ε'(ω = 0)  = εs ε'(ω = 0) = 0
       

ε'(ω → ∞)  = ε∞     

From working with the complex notation for sin- and cosin-functions we also know that

ε', the real part of a complex amplitude, gives the amplitude of the response that is in phase with the driving force,
ε'', the imaginary part, gives the amplitude of the response that is phase-shifted by 90o.

Finally, we can ask ourselves: What does it look like? What are the graphs of ε' and ε''?

Relatively simple curves, actually, They always look like the graphs shown below, the three numbers that define a
particular material (εs, ε∞, and τ = 2π /ω0) only change the numbers on the scales.

Note that ω for curves like this one is always on a logarithmic scale!

What the dielectric function for orientation polarization looks like for real systems can be tried out with the JAVA applet
below - compare that with the measured curves for water. We have a theory for the frequency dependence which is
pretty good!

Since ε∞ must be = 1 (or some value determined by some other mechanism that also exists) if we go to frequencies
high enough, the essential parameters that characterize a material with orientation polarization are εs and τ (or ωo).

εs we can get from the polarization mechanism for the materials being considered. If we know the dipole moments
of the particles and their density, the Langevin function gives the (static) polarization and thus εs.
We will not, however, obtain τ from the theory of the polarization considered so far. Here we have to know more
about the system; for liquids, e.g., the mean time before two dipoles collide and "loose" all their memory about their
previous orientation. This will be expressed in some kind of diffusion terminology, and we have to know something
about the random walk of the dipoles in the liquid. This, however, will go far beyond the scope of this course.
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Suffice it to say that typical relaxation times are around 10 –11 s; this corresponds to frequencies in the GHz range , i.e.
"cm -waves". We must therefore expect that typical materials exhibiting orientation polarization (e.g. water), will show
some peculiar behavior in the microwave range of the electromagnetic spectrum.

In mixtures of materials, or in complicated materials with several different dipoles and several different relaxation
times, things get more complicated. The smooth curves shown above may be no longer smooth, because they now
result from a superposition of several smooth curves.
Finally, it is also clear that τ may vary quite a bit, depending on the material and the temperature. If heavy atoms
are involved, τ tends to be larger and vice versa. If movements speed up because of temperature, τ will get smaller.
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3.3.3 Resonance for Ionic and Atomic Polarization

The frequency dependence of the electronic and ionic polarization mechanisms are mathematically identical - we have a
driven oscillating system with a linear force law and some damping. In the simple classical approximation used so far,
we may use the universal equation describing an oscillating system driven by a force with a sin(ωt) time dependence

m ·
d2x

dt2
 +  kF · m ·

d x

d t
 +  ks · x   = q · E0 · exp (i ω t)

With m = mass, kF = friction coefficient; describing damping, kS = "spring" coefficient or constant; describing the
restoring force, q · E0 = amplitude times charge to give a force , E = E0· exp (iω t) is the time dependence of
electrical field in complex notation.
This is of course a gross simplification: In the equation above we look at one mass m hooked up to one spring,
whereas a crystal consists of a hell of a lot of masses (= atoms), all coupled by plenty of springs (= bonds).
Nevertheless, the analysis of just one oscillating mass provides the basically correct answer to our quest for the
frequency dependence of the ionic and atomic polarization. More to that in link.

We know the "spring" coefficient for the electronic and ionic polarization mechanism; however, we do not know from our
simple consideration of these two mechanisms the "friction" term.

So lets just consider the general solution to the differential equation given above in terms of the general constants
kS and kF and see what kind of general conclusions we can draw.

From classical mechanics we know that the system has a resonance frequency ω0, the frequency with the maximum
amplitude of the oscillation, that is (for undamped oscillators) always given by

ω 0  = 




kS

m





1/2

The general solution of the differential equation is

x(ω ,t)  =  x(ω ) · exp (iωt + φ)

The angle φ is necessary because there might be some phase shift. This phase shift, however, is automatically
taken care of if we use a complex amplitude. The complex x(ω ) is given by

x(ω )  =  
q · E0

m







ω02 – ω2

(ω 02 – ω 2)2 + kF2 ω 2


   –  i · 

kF ω

(ω 02 – ω 2)2 + kF2 ω 2







x(ω ) indeed is a complex function, which means that the amplitude is not in phase with the driving force if the
imaginary part is not zero.

Again, we are interested in a relation between the sin components of the polarization P(ω) and the sin components of
the driving field E = E0·exp (iωt) or the dielectric flux D(ω) and the field. We have

P  = N · q · x(ω )     
       
D  = ε0 · εr · E   =  ε0 · E  +  P   =  ε0 · E  +  N · q · x(ω )

If we insert x(ω) from the solution given above, we obtain a complex relationship between D and E

D  =  



ε0  +  

N · q2

m







ω02 – ω2

(ω 02 – ω 2)2  +  kF2 ω 2


–   i 

kF ω

(ω 02 – ω2)2 + kF2 ω 2











· E

This looks pretty awful, but it encodes basic everyday knowledge!
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This equation can be rewritten using the dielectric function defined before with the added generalization that we now
define it for the permittivity, i.e, for

ε(ω)  = εr(ω ) · ε0 = ε'(ω)   –  i · ε''(ω)

For the dielectric flux D, which we prefer in this case to the polarization P, we have as always

D(ω, t)  = [ε'(ω )  –  i · ε''(ω )] · E0 · exp (iω t)

The time dependence of D is simple given by exp (iω t), so the interesting part is only the ω - dependent factor.

Rewriting the equations for the real and imaginary part of ε we obtain the general dielectric function for resonant
polarization mechanisms:

ε'  =  ε0  +  
N · q2

m 

  




ω02 – ω2

(ω 02 – ω 2)2  +  kF2 · ω2





       

ε''  =  
N · q2

m
 




kF · ω

(ω 02 – ω 2)2  +  kF2 · ω2





These formula describe the frequency dependence of the dielectric constant of any material where the polarization
mechanism is given by separating charges with mass m by an electrical field against a linear restoring force.

For the limiting cases we obtain for the real and imaginary part

ε'(ω = 0)  = 



ε0  + 

N · q2

m 





  
1 

ω 02
  =  




ε0  + 

N · q2

m 





  
m 

kS
               

ε'(ω = ∞)  = ε0            

For ε'(ω = ∞) we thus have εr = ε'/ε0 = 1 as must be.

The most important material parameters for dielectric constants at the low frequency limit, i.e. ω ⇒ 0, are therefore the
masses m of the oscillating charges, their "spring" constants kS, their density N, and the charge q on the ion
considered.

We have no big problem with these parameters, and that includes the "spring" constants. It is a direct property of
the bonding situation and in principle we know how to calculate its value.
The friction constant kF does not appear in the limit values of ε. As we will see below, it is only important for
frequencies around the resonance frequency.

For this intermediate case kF is the difficult parameter. On the atomic level, "friction" in a classical sense is not defined,
instead we have to resort to energy dispersion mechanisms. While it is easy to see how this works, it is difficult to
calculate numbers for kF.

Imagine a single oscillating dipole in an ionic crystal. Since the vibrating ions are coupled to their neighbours via
binding forces, they will induce this atoms to vibrate, too - in time the whole crystal vibrates. The ordered energy
originally contained in the vibration of one dipole (ordered, because it vibrated in field direction) is now dispersed as
unordered thermal energy throughout the crystal.
Since the energy contained in the original vibration is constant, the net effect on the single oscillating dipole is that
of damping because its original energy is now spread out over many atoms. Formally, damping or energy dispersion
can be described by some fictional "friction" force.
Keeping that in mind it is easy to see that all mechanisms, especially interaction with phonons, that convert the
energy in an ordered vibration in field direction to unordered thermal energy always appears as a kind of friction
force on a particular oscillator. Putting a number on this fictional friction force, however, is clearly a different (and
difficult) business.
However, as soon as you realize that the dimension of kF is 1/s and that 1/kF simply is about the time that it takes
for an oscillation to "die", you can start to have some ideas - or you check the link.
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Now lets look at some characteristic behavior and some numbers as far as we can derive them in full generality.

For the electronic polarization mechanism, we know the force constant, it is

kS  =  
(ze)2

4 π · ε0 · R3

With the proper numbers for a hydrogen atom we obtain

ω0  ≈ 5 · 1016 Hz 

This is in the ultraviolet region of electromagnetic radiation. For all other materials we would expect similar values
because the larger force constants ((ze)2 overcompensates the increasing size R) is balanced to some extent by
the larger mass.
For the ionic polarization mechanism, the masses are several thousand times higher, the resonance frequency thus
will be considerably lower. It is, of course simply the frequency of the general lattice vibrations which, as we know,
is in the 1013 Hz range

This has an important consequence:

The dielectric constant at frequencies higher than about the frequency corresponding to the UV part of the spectrum
is always 1. And since the optical index of refraction n is directly given by the DK (n = ε 1/2), there are no optical
lenses beyond the UV part of the spectrum.
In other words: You can not built a deep-UV or X-ray microscope with lenses, nor - unfortunately - lithography
machines for chips with smallest dimension below about 0,2 µm. For the exception to this rule see the footnote
from before.

If we now look at the characteristic behavior of ω ' and ω '' we obtain quantitatively the following curves (by using the
JAVA module provided for in the link):

Note that ω is again on a logarithmic scale!

Note also that it is perfectly possible that ε' and therefore εr becomes negative. We won't go into what that means.
however.

The colors denote different friction coefficients kF. If kF would be zero, the amplitude and therefore ε' would be ∞ at the
resonance point, and ε'' would be zero everywhere, and infinity at the resonance frequency; i.e. ε'' is the Delta function.

While this can never happen in reality, we still may expect significantly larger ε values around the resonance
frequency than in any other frequency region.

That the maximum value of ε'' decreases with increasing damping might be a bit counter-intuitive at first (in fact it was
shown the wrong way in earlier versions of this Hyperscript), but for that it extends over ever increasing regions in
frequency.
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3.3.4 Complete Frequency Dependence of a Model Material

The frequency dependence of a given material is superposition of the various mechanisms at work in this material. In the
idealized case of a model material containing all four basic mechanisms in their pure form (a non-existent material in
the real world), we would expect the following curve.

Note that ω is once more on a logarithmic scale!

This is highly idealized - there is no material that comes even close! Still, there is a clear structure. Especially there
seems to be a correlation between the real and imaginary part of the curve. That is indeed the case; one curve contains
all the information about the other.

Real dielectric functions usually are only interesting for a small part of the spectrum. They may contain fine
structures that reflect the fact that there may be more than one mechanism working at the same time, that the
oscillating or relaxing particles may have to be treated by quantum mechanical methods, that the material is a mix
of several components, and so on.
In the link a real dielectric function for a more complicated molecule is shown. While there is a lot of fine structure,
the basic resonance function and the accompanying peak for ε'' is still clearly visible.

It is a general property of complex functions describing physical reality that under certain very general conditions, the
real and imaginary part are directly related. The relation is called Kramers-Kronig relation; it is a mathematical, not a
physical property, that only demands two very general conditions to be met:

Since two functions with a time or frequency dependence are to be correlated, one of the requirements is causality,
the other one linearity.
The Kramers-Kronig relation can be most easily thought of as a transformation from one function to another by a
black box; the functions being inputs and outputs. Causality means that there is no output before an input; linearity
means that twice the input produces twice the output. Otherwise, the transformation can be anything.

The Kramers-Kronig relation can be written as follows: For any complex function, e.g. ε(ω) = ε'(ω) + iε''(ω), we have the
relations

ε'(ω)  =  
– 2 ω

π
  

∞
⌠
⌡
0

 
ω* · ε''(ω*)

ω*2– ω2
· dω*

ε''(ω)  =  
2 ω

π
  

∞
⌠
⌡
0

 
ε'(ω*)

ω*2– ω2
· dω*  

The Kramers-Kronig relation can be very useful for experimental work. If you want to have the dielectric function of some
materials, you only have to measure one component, the other one can be calculated.

 

Questionaire
Multiple Choice questions to all of 3.3
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3.3.5 Summary to: Frequency Dependence of the Dielectric Constant

Alternating electrical fields induce alternating forces for dielectric
dipoles. Since in all polarization mechanisms the dipole
response to a field involves the movement of masses, inertia will
prevent arbitrarily fast movements.

Above certain limiting frequencies of the electrical field, the
polarization mechanisms will "die out", i.e. not respond to
the fields anymore.

 

This might happen at rather high (= optical) frequencies,
limiting the index of refraction n = (εr)1/2

 

    
The (only) two physical mechanisms governing the movement of
charged masses experiencing alternating fields are relaxation
and resonance.
Relaxation describes the decay of excited states to the ground
state; it describes, e.g., what happens for orientation
polarization after the field has been switched off.

 

From the "easy to conceive" time behavior we deduce the
frequency behavior by a Fourier transformation

 

The dielectric function describing relaxation has a typical
frequency dependence in its real and imaginary part ⇒

 

 
Resonance describes anything that can be modeled as a mass
on a spring - i.e. electronic polarization and ionic polarization.

 

The decisive quantity is the (undamped) resonance
frequency ω 0 = ( kS/ m)½ and the "friction" or damping
constant kF
The "spring" constant is directly given by the restoring
forces between charges, i.e. Coulombs law, or (same thing)
the bonding. In the case of bonding (ionic polarization) the
spring constant is also easily expressed in terms of Young's
modulus Y. The masses are electron or atom masses for
electronic or ionic polarization, respectively.

 

The damping constant describes the time for funneling off
("dispersing") the energy contained in one oscillating mass
to the whole crystal lattice. Since this will only take a few
oscillations, damping is generally large.

 

The dielectric function describing relaxation has a typical
frequency dependence in its real and imaginary part ⇒
The green curve would be about right for crystals.

 

    
The complete frequency dependence of the dielectric behavior of
a material, i.e. its dielectric function, contains all mechanisms
"operating" in that material.

 

As a rule of thumb, the critical frequencies for relaxation
mechanisms are in theGHz region, electronic polarization
still "works" at optical (1015 Hz) frequencies (and thus is
mainly responsible for the index of refraction).
Ionic polarization has resonance frequencies in between.  

Interface polarization may "die out" already a low
frequencies.

 

A widely used diagram with all mechanisms shows this, but
keep in mind that there is no real material with all 4 major
mechanisms strongly present!
⇒

 

    
A general mathematical theorem asserts that the real and
imaginary part of the dielectric function cannot be completely
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A general mathematical theorem asserts that the real and
imaginary part of the dielectric function cannot be completely
independent

 

ε'(ω)  =  
– 2 ω

π
  

∞
⌠
⌡
0

 
ω* · ε''(ω*)

ω*2– ω2
· dω*

ε''(ω)  =  
2 ω

π
  

∞
⌠
⌡
0

 
ε'(ω*)

ω*2– ω2
· dω*  

If you know the complete frequency dependence of either
the real or the imaginary part, you can calculate the
complete frequency dependence of the other.

 

This is done via the Kramers-Kronig relations; very useful
and important equations in material practice.
⇒

 

  
Questionaire

Multiple Choice questions to all of 3.3
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3.4. Dynamic Properties

3.4.1 Dielectric Losses

The electric power (density) L lost per volume unit in any material as heat is always given by

L  = j · E

With j = current density, and E = electrical field strength.

In our ideal dielectrics there is no direct current, only displacement currents j(ω) = dD/dt may occur for alternating
voltages or electrical fields. We thus have

j(ω)  = 
dD

dt
 =  ε(ω) ·

dE

dt
  =  ε(ω) ·

d[E0 exp(iωt)]

dt
  =  ε(ω) · i ·ω · E0 · exp (iωt)  =  ε(ω) · i · ω · E(ω)

(Remember that the dielectric function ε(ω) includes ε0).

With the dielectric function written out as ε(ω) = ε'(ω) – i · ε''(ω) we obtain

j(ω)  = ω · ε'' · E(ω)   + i · ω · ε' · E(ω)
     

  
real part
of j(ω);
in phase

 
imaginary part
of j(ω)
90o out of phase

That part of the displacement current that is in phase with the electrical field is given by ε'', the imaginary part of the
dielectric function; that part that is 90o out of phase is given by the real part of ε(ω). The power losses thus have two
components
 

Active power1)

.
Reactive power

LA  =  power really lost,
turned into heat   =  ω · |ε''| · E2 LR  =  

power extended
and recovered
each cycle

  =  ω · |ε'| · E2

1) Other possible expressions are:
actual power, effective power, real power, true power

 

  
Remember that active, or effective, or true power is energy deposited in your system, or, in other words, it is the
power that heats up your material! The reactive power is just cycling back and forth, so it is not heating up anything
or otherwise leaving direct traces of its existence.

The first important consequence is clear:

We can heat up even a "perfect" (= perfectly none DC-conducting material) by an AC voltage; most effectively at
frequencies around its resonance or relaxation frequency, when ε'' is always maximal.
Since ε'' for the resonance mechanisms is directly proportional to the friction coefficient kR, the amount of power
lost in these cases thus is directly given by the amount of "friction", or power dissipation, which is as it should be.

It is conventional, for reason we will see immediately, to use the quotient of LA /LR as a measure of the "quality" of a
dielectric: this quotient is called "tangens delta" (tg δ) and we have

LA

LR

 := tg δ  =  
IA

IR
 =  

ε''

ε'
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Why this somewhat peculiar name was chosen will become clear when we look at a pointer representation of the
voltages and currents and its corresponding equivalent circuit. This is a perfectly legal thing to do: We always can
represent the current from above this way; in other words we can always model the behaviour of a real dielectric
onto an equivalent circuit diagram consisting of an ideal capacitor with C(ω) and an ideal resistor with R(ω).

The current IA flowing through the ohmic resistor of the equivalent circuit diagram is in phase with the voltage U; it
corresponds to the imaginary part ε'' of the dielectric function times ω.

The 90o out-of-phase current IR flowing through the "perfect" capacitor is given by the real part ε' of the dielectric
function times ω.
The numerical values of both elements must depend on the frequency, of course - for ω = 0, R would be infinite for
an ideal (non-conducting) dielectric.
The smaller the angle δ or tg δ, the better with respect to power losses.

Using such an equivalent circuit diagram (with always "ideal" elements), we see that a real dielectric may be
modeled by a fictitious "ideal" dielectric having no losses (something that does not exist!) with an ohmic resistor in
parallel that represents the losses. The value of the ohmic resistor (and of the capacitor) must depend on the frequency;
but we can easily derive the necessary relations.

How large is R, the more interesting quantity, or better, the conductivity σ of the material that corresponds to R?
Easy, we just have to look at the equation for the current from above.
For the in-phase component we simply have

j(ω)  = ω · ε'' · E(ω)

Since we always can express an in-phase current by the conductivity σ via

j(ω)  := σ(ω) · E(ω)

we have

σDK(ω)  = ω · ε''(ω)

In other words: The dielectric losses occuring in a perfect dielectric are completely contained in the imaginary part of the
dielectric function and express themselves as if the material would have a frequency dependent conductivity σDK as
given by the formula above.

This applies to the case where our dielectric is still a perfect insulator at DC (ω = 0 Hz), or, a bit more general, at
low frequencies; i.e. for σDK(ω → 0) = 0.

However, nobody is perfect! There is no perfect insulator, at best we have good insulators. But now it is easy to see
what we have to do if a real dielectric is not a perfect insulator at low frequencies, but has some finite conductivity σ0
even for ω = 0. Take water with some dissolved salt for a simple and relevant example.

In this case we simple add σ0 to σDK to obtain the total conductivity responsible for power loss

σtotal  = σperfect  +  σreal
   
  = σDK  +  σ0 

Remember: For resistors in parallel, you add the conductivities (or1/R's) ; it is with resistivities that you do the 1/
Rtotal = 1/R1 + 1/R2 procedure.
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Since it is often difficult to separate σDK and σ0, it is convenient (if somewhat confusing the issue), to use σtotal in the
imaginary part of the dielectric function. We have

ε'' = 
σtotal

ω

We also have a completely general way now, to describe the response of any material to an electrical field, because
we now can combine dielectric behavior and conductivity in the complete dielectric function of the material.
Powerful, but only important at high frequencies; as soon as the imaginary part of the "perfect" dielectric becomes
noticeable. But high frequencies is where the action is. As soon as we hit the high THz region and beyond, we start
to call what we do "Optics", or "Photonics", but the material roots of those disciplines we have right here.

In classical electrical engineering at not too large frequencies, we are particularily interested in the relative magnitude of
both current contributions, i.e in tgδ. From the pointer diagram we see directly that we have

IA

IR
 = tg δ

We may get an expression for tg δ by using for example the Debye equations for ε' and ε'' derived for the dipole
relaxation mechanism:

tg δ  =  
ε''

ε'
 =  

(εs – ε∞) · ω / ω0

εs  +  ε∞ · ω2/ ω02

or, for the normal case of ε∞ = 1 (or , more correctly ε0)

tg δ  =  
(εs – 1) · ω/ ω0

εs + ω2/ ω02

This is, of course, only applicable to real perfect dielectrics, i.e. for real dielectrics with σ0 = 0.

The total power loss, the really interesting quantity, then becomes (using ε'' = ε' · tgδ, because tgδ is now seen as a
material parameter) .

LA  =  ω · ε' · E2 · tg δ

This is a useful relation for a dielectric with a given tg δ (which, for the range of frequencies encountered in "normal"
electrical engineering is approximately constant). It not only gives an idea of the electrical losses, but also a very rough
estimate of the break-down strength of the material. If the losses are large, it will heat up and this always helps to
induce immediate or (much worse) eventual breakdown.
We also can see now what happens if the dielectric is not ideal (i.e. totally insulating), but slightly conducting:

We simply include σ0 in the definition of tgδ (and then automatically in the value of ε'').

tg δ is then non-zero even for low frequencies - there is a constant loss of power into the dielectric. This may be of
some consequence even for small tg δ values, as the example will show:

The tg δ value for regular (cheap) insulation material as it was obtainable some 20 years ago at very low frequencies (50
Hz; essentially DC) was about tg δ = 0,01.

Using it for a high-voltage line (U = 300 kV) at moderate field strength in the dielectric (E = 15MV/m; corresponding
to a thickness of 20 mm), we have a loss of 14 kW/m3 of dielectric, which translates into about 800 m high voltage
line. So there is little wonder that high-voltage lines were not insulated by a dielectric, but by air until rather recently!

Finally, some examples for the tg δ values for commonly used materials (and low frequencies):
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Material εr
tg δ
x 10-4

Al2O3
(very good ceramic) 10 5....20

SiO2 3,8 2

BaTiO3 500 (!!) 150

Nylon 3,1

10...0,7Poly...carbonate,
...ethylene
...styrol

about 3

PVC 3 160

And now you understand how the microwave oven works and why it is essentially heating only the water contained in
the food.

Questionaire
Multiple Choice questions to 3.2.1
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3.4.2 Summary to: Dynamic Properties - Dielectric Losses

The frequency dependent current density j flowing
through a dielectric is easily obtained. ⇒

j(ω)  = 
dD

dt
= ε(ω) ·

dE

dt
  =  ω · ε'' · E(ω)  +  i · ω · ε' · E(ω)

    in phase  out of phase

 

The in-phase part generates active power and
thus heats up the dielectric, the out-of-phase
part just produces reactive power

 

The power losses caused by a dielectric are
thus directly proportional to the imaginary
component of the dielectric function

 

LA  =  power turned
into heat   =  ω · |ε''| · E2

 

   
The relation between active and reactive power is
called "tangens Delta" (tg(δ)); this is clear by looking
at the usual pointer diagram of the current

LA

LR

 := tg δ  =  
IA

IR
 =  

ε''

ε'

 

 
 The pointer diagram for an ideal dielectric σ(ω =

0) = 0can always be obtained form an (ideal)
resistor R(ω) in parallel to an (ideal) capacitor
C(ω).

 

R(ω) expresses the apparent conductivity
σDK(ω) of the dielectric, it follows that

 

σDK(ω)  = ω · ε''(ω)
 

     
For a real dielectric with a non-vanishing conductivity
at zero (or small) frequencies, we now just add
another resistor in parallel. This allows to express all
conductivity effects of a real dielectric in the
imaginary part of its (usually measured) dielectric
function via

 

ε'' = 
σtotal

ω

We have no all materials covered with respect to
their dielectric behavior - in principle even
metals, but then resorting to a dielectric function
would be overkill.

 

 
A good example for using the dielectric function is
"dirty" water with a not-too-small (ionic) conductivity,
commonly encountered in food.

 

The polarization mechanism is orientation
polarization, we expect large imaginary parts of
the dielectric function in the GHz region.

 

It follows that food can be heated by microwave
(ovens)!

 

  
Questionaire

Multiple Choice questions to all of 3.4
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3.5 Electrical Breakdown and Failure

3.5.1 Observation of Electrical Breakdown and Failure

As you know, the first law of Materials science is "Everything can be broken". Dielectrics are no exception to this
rule. If you increase the voltage applied to a capacitor, eventually you will produce a big bang and a lot of smoke - the
dielectric material inside the capacitor will have experienced "electrical breakdown" or electrical break-through, an
irreversible and practically always destructive sudden flow of current.

The critical parameter is the field strength E in the dielectric. If it is too large, breakdown occurs. The (DC) current
vs. field strength characteristic of a dielectric therefore may look look this:

After reaching Ecrit, a sudden flow of current may, within very short times (10–8 s) completely destroys the dielectric
to a smoking hot mass of undefinable structure.
Unfortunately, Ecrit is not a well defined material property, it depends on many parameters, the most notable
(besides the basic material itself) being the production process, the thickness, the temperature, the internal
structure (defects and the like), the age, the environment where it is used (especially humidity) and the time it
experienced field stress.

In the cases where time plays an essential role, the expression "failure" is used. Here we have a dielectric being used
at nominal field strength well below its breakdown field-strength for some time (usually many years) when it more or less
suddenly "goes up in smoke". Obviously the breakdown field strength decreases with operating time - we observe a
failure of the material.

In this case the breakdown may not be explosive; but a leakage current may develop which grows over time until a
sudden increase leads to total failure of the dielectric.
The effect can be most easily tested or simulated, by impressing a constant (very small) current in the dielectric
and monitoring the voltage needed as a function of time. Remember that by definition you cannot have a large
current flowing through an insulator = dielectric; but "ein bißchen was geht immer" - a tiny little current is always
possible if you have enough voltage at your disposal. A typical voltage-time curve may then look like this:

The voltage needed to press your tiny test current through the dielectric starts to decrease rapidly after some time -
hours, days, weeks, ..., and this is a clear indication that you dielectric becomes increasingly leaky, and will go up
in smoke soon.
A typical result is that breakdown of a "good" dielectric occurs after - very roughly - 1 C of charge has been passed.

The following table gives a rough idea of critical field strengths for certain dielectric materials
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Material Critical Field Strength
[kV/cm]

Oil 200

Glass, ceramics 200...400

Mica 200...700

Oiled paper 1800

Polymers 50...900

SiO2 in ICs > 10 000

The last examples serves to remind you that field strength is something totally different from voltage! Lets look at
typical data from an integrated memory circuit, a so- called DRAM, short for Dynamic Random Access Memory. It
contains a capacitor as the central storage device (no charge = 1; charge = 0). This capacitor has the following typical
values:

Capacity ≈ 30 fF (femtofarad)
Dielectric: ONO, short for three layers composed of Oxide (SiO2), Nitride (Si3N4) and Oxide again - together about
8 nm thick!
Voltage: 5 V, and consequently
Field strength E = 5/8 V/nm ≈ 6 · 106 V/cm.
This is far above the critical field strength for practically all bulk materials! We see very graphically that high field
strength and voltage have nothing to do with each other. We also see for the first time that materials in the form of a
thin film may have properties quite different from their bulk behavior - fortunately they are usually much "better".

Last, lets just note in passing, that electrical breakdown is not limited to insulators proper. Devices made from "bad "
conductors - i.e. semiconductors or ionic conductors - may contain regions completely depleted of mobile carriers -
space charge regions at junctions are one example.

These insulating regions can only take so much field strength before they break down, and this may severely limit
their usage in products

Questionaire
Multiple Choice questions to 3.5.1

Advanced Materials B, part 1 - script - Page 109

http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_3/exercise/c3_5_1.html


3.5.2 Mechanisms of Electrical Breakdown

What are the atomic mechanisms by which breakdown occurs or dielectrics fail? This is a question not easily answered
because there is no general mechanism expressible in formulas. Most prominent are the following disaster scenarios:
Thermal breakdown

A tiny little current that you can't even measure is flowing locally through "weak" parts of the dielectric. With
increasing field strength this current increases, producing heat locally, which leads to the generation of point
defects. Ionic conductivity sets in, more heat is produced locally, the temperature goes up even more.... - boooom!
This is probably the most common mechanism in run-of-the-mill materials which are usually not too perfect.

Avalanche breakdown

Even the most perfect insulator contains a few free electron. Either because there is still a non-zero probability for
electrons in the conduction band, even for large band gaps, or because defects generate some carriers, or because
irradiation (natural radioactivity may be enough) produces some.
In large electrical field these carriers are accelerated; if the field strength is above a certain limit, they may pick up
so much energy that they can rip off electrons from the atoms of the materials. A chain reaction then leads to a
swift avalanche effect; the current rises exponentially ... boom!

Local discharge

In small cavities (always present in sintered ceramic dielectrics) the field strength is even higher than the average
field (ε is small)- a microscopic arc discharge may be initiated. Electrons and ions from the discharge bombard the
inner surface and erode it. The cavity grows, the current in the arc rises, the temperature rises ... - boooom!

Electrolytic breakdown

Not as esoteric as it sounds! Local electrolytical (i.e involving moving ions) current paths transport some conducting
material from the electrodes into the interior of the dielectric. Humidity (especially if it is acidic) may help. In time a
filigree conducting path reaches into the interior, reducing the local thickness and thus increasing the field strength.
The current goes up....booom!
This is a very irreproducible mechanism because it depends on many details, especially the local environmental
conditions. It may slowly built up over years before it suddenly runs away and ends in sudden break-through.

   
Do the incredibly good dielectrics in integrated circuits fail eventually? After all, they are worked at very high field
strength, but the field never increases much beyond its nominal value.

The answer is that they do fail. The mechanisms are far from being clear and it is one of the more demanding tasks
in the field to predict the life-time of a dielectric in a chip. Empirically, however, an interesting relation has been
found:
The dielectric will fail after a certain amount of charge has been passed through it - very roughly about 1 As. This
allows to test the chip dielectrics: A very small current is forced through the dielectric; the voltage necessary to do
that is monitored. If the voltage rapidly goes down after about 1 As of total charge has been passed, the dielectric is
OK. Now its life time can be predicted: Since every time the voltage is on, a tiny little current flows, the life time can
be roughly predicted from the leakage current and the average frequency of voltage switching. About 10 a should be
obtained.
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3.5.3 Summary to: Electrical Breakdown and Failure

The first law of materials science obtains: At field strengths larger
than some critical value, dielectrics will experience (destructive)
electrical breakdown

This might happen suddenly (then calls break-down) , with a
bang and smoke, or

 

it may take time - months or years - then called failure.  

Critical field strength may vary from < 100 kV/cm to > 10 MV /
cm.

  

   
Highest field strengths in practical applications do not necessarily
occur at high voltages, but e.g. in integrated circuits for very thin (a
few nm) dielectric layers

 
Example 1: TV set, 20 kV cable,
thickness of insulation = 2 mm. ⇒ E
= 100 kV/cm
Example 2: Gate dielectric in
transistor, 3.3 nm thick, 3.3 V
operating voltage. ⇒ E = 10 MV/cm

Properties of thin films may be quite different (better!) than bulk
properties!

 

 
Electrical breakdown is a major source for failure of electronic
products (i.e. one of the reasons why things go "kaputt" (= broke)),
but there is no simple mechanism following some straight-forward
theory. We have:

  

Thermal breakdown; due to small (field dependent) currents
flowing through "weak" parts of the dielectric.

  

Avalanche breakdown due to occasional free electrons being
accelerated in the field; eventually gaining enough energy to
ionize atoms, producing more free electrons in a runaway
avalanche.

  

Local discharge producing micro-plasmas in small cavities,
leading to slow erosion of the material.

  

Electrolytic breakdown due to some ionic micro conduction
leading to structural changes by, e.g., metal deposition.

  

  
Questionaire

Multiple Choice questions to all of 3.5
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3.6 Special Dielectrics

3.6.1 Piezo Electricity and Related Effects

Piezo Electricity

The polarization of a material must not necessarily be an effect of electrical fields only; it may come about by other
means, too.

Most prominent is the inducement of polarization by mechanical deformation, which is called piezo electricity. The
reverse mechanism, the inducement of mechanical deformation by polarization, also falls under this heading.

The principle of piezo electricity is easy to understand:

Let'as consider a crystal with ionic components and some arrangement of ions as shown (in parts) in the picture
above. In the undeformed symmetrical arrangement, we have three dipole moments (red arrows) that exactly cancel
in vector addition.
If we induce some elastic deformation as shown, the symmetry is broken and the three dipole moments no longer
cancel - we have induced polarization by mechanical deformation.
We also realize that symmetry is somehow important. If we were to deform the "crystal" in a direction perpendicular
to the drawing plane, nothing with respect to polarization would happen. This tells us:

Piezo electricity can be pronounced in single crystals if they are deformed in the "right" direction, while it
may be absent or weak in polycrystals with randomly oriented grains.
Piezo electricity must be described by a tensor of second rank. What this means is that we must consider
the full tensor properties of the susceptibility χ or the dielectric constant εr when dealing with piezoelectricity
proper.

If one looks more closely at this, it turns out that the crystal symmetry must meet certain conditions. Most
important is that it must not have an inversion center.

We won't look into the tensor properties of piezoelectricity but just note that for piezo electric materials we have a
general relation between polarization P and deformation e of the form

P  =  const. · e

With e = mechanical strain = ∆l /l = relative change of length. (Strain is usually written as ε; but here we use e to
avoid confusion with the dielectric constant).

In piezo electric materials, mechanical deformation produced polarization, i.e an electrical field inside the material. The
reverse then must be true, too:

Piezo electrical materials exposed to an electrical field will experience a force and therfore undergo mechanical
deformation, i.e. get somewhat shorter or longer.

So piezo electricity is restricted to crystals with relatively low symmetry (there must be no center of symmetry; i.e. no
inversion symmetry) in single crystalline form (or at least strongly textured poly crystals). While that appears to be a
rather limiting conditions, piezo electricity nevertheless has major technical uses:

Most prominent, perhaps, are the quartz oscillators, where suitable (and small) pieces of single crystals of quartz
are given a very precisely and purely mechanically defined resonance frequency (as in tuning forks). Crystalline
quartz happens to be strongly piezo electric; if it is polarized by an electrical field of the right frequency, it will
vibrate vigorously, otherwise it will not respond. This can be used to control frequencies at a very high level of
precision. More about quartz oscillators (eventually) in the link
Probably just as prominent by now, although a rather recent big break-through, are fuel injectors for advanced
("common rail") Diesel engines. Makes for more fuel efficient and clean engines and is thus a good thing. More to
that in this link.The materials of choice for this mass application is PZT, Lead zirconate titanate. This link gives a
short description.
While for fuel injectors relatively large mechanical displacements are needed, the piezoelectric effect can just as
well be used for precisely controlled very small movements in the order of fractions of nm to µm, as it is, e.g.,
needed for the scanning tunnelling microscope.
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There are many more applications (consult the links from above), e.g. for

Microphones.
Ultrasound generators.
Surface acoustic wave filters (SAW).
Sensors (e.g. for pressure or length).

   

Electrostriction
  

An effect that must be kept separate from the piezo electricity is electrostriction, where again mechanical deformation
leads to polarization.

It is an effect observed in many material, but usually much weaker than the piezo electric effect. Much simplified,
the effect results if dipoles induced by electronic polarization are not exactly in field direction (e.g. in covalent
bonds) and then experience a mechanical force (leading to deformation) that tries to rotate them more into the field
direction.
The deformation e in this case depends on the square of the electrical field because the field induces the dipoles
and acts on them. We have

e  = 
∆l

l
 =  const · E2

Because of the quadratic dependence, the sign of the field does not matter (in contrast to piezo electricity).

There is no inverse effect - a deformation does not produce an electric field.

Electrostriction can be used to produce extremely small deformations in a controlled way; but it is not really much used.

  

Pyro Electricity
  

Polarization can also be induced by sudden changes in the temperature, this effect is called pyro electricity; it is most
notably found in natural tourmalin crystals.

The effect comes about because pyro electrical crystals are naturally polarized on surfaces, but this polarization is
compensated by mobile ions in a "dirt" skin, so that no net polarization is observed.
Changes in temperature change the natural polarization, but because the compensation process may take a rather
long time, an outside polarization is observed for some time.

   

Electrets
  

The word "electret" is a combination of electricity and magnet - and that tells it all:

Electrets are the electrical analog of (permanent) magnets: Materials that have a permanent macroscopic
polarization or a permanent charge. Ferroelectric materials (see next sub-chapter) might be considered to be a sub-
species of electrets with a permanent polarization that is "felt" if the internal domains do not cancel each other.
Electrets that contain surplus charge that is not easily lost (like the charge on your hair after brushing it on dry
days) are mostly polymers, like fluoropolymers or polyproylene.

Electrets have been a kind of scientific curiosity since the early 18th century (when people did a lot of rubbing things to
generate electricity), their name was coined in 1885 by Oliver Heaviside

Lately, however, they were put to work. Cheap electret microphones are now quite ubiquitous; electrostatic filters
and copy machines might employ electrets, too.
It is a safe bet that some of the "exotic" materials mentioned in this sub-chapter 3.6 (and some materials not even
mentioned or maybe not yet discovered) will be turned into products within your career as an engineer, dear student!
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3.6.2 Ferro Electricity

The name, obviously, has nothing to do with "Ferro" (= Iron), but associates the analogy to ferro magnetism. It means
that in some special materials, the electrical dipoles are not randomly distributed, but interact in such a way as to align
themselves even without an external field.

We thus expect spontaneous polarization and a very large dielectric constant (DK).

This should be very useful - e.g. for making capacitors - but as in the case of ferro magnetism, there are not too
many materials showing this behavior.

The best known material used for many application is BaTiO3 (Barium titanate).

It has a simple lattice as far as materials with three different atoms can have a simple lattice at all. The doubly
charged Ba2+ atoms sits on the corners of a cube, the O2– ions on the face centers, and the Ti4+ ion in the center
of the cube.
We have 8 Ba2+ ions belonging to 1/8 to the elementary cell, 6 O2– ions belonging to 1/2 to the elementary cell,
and one Ti4+ ion belonging in total to the cell, which gives us the BaTiO3 stoichiometry.
This kind of crystal structure is called a Perovskite structure; it is very common in nature and looks like the
drawing below (only three of the six oxygen ions are shown for clarity):

Often, the lattice is not exactly cubic, but slightly distorted. In the case of BaTiO3 this is indeed the case: The Ti - ion
does not sit in the exact center of the slightly distorted cube, but slightly off to one side. It thus has two symmetrical
positions as schematically (and much exaggeratedly) shown below

Each elementary cell of BaTiO3 thus carries a dipole moment, and, what's more
important, the moments of neighbouring cells tend to line up.

The interactions between the dipoles that lead to a line-up can only be understood with quantum mechanics. It is not
unlike the interactions of spins that lead to ferro magnetism.

We will not go into details of ferro electricity at this point. Suffice it to say that there are many uses. Traditionally,
many capacitors use ferro-electric materials with high DK values. In recent years, a large interest in ferro-electrics
for uses in integrated circuits has developed; we have yet to see if this will turn into new products.
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3.6.3 Summary to: Special Dielectrics

Polarization P of a dielectric material can also be induced by
mechanical deformation e or by other means.

P  =  const. · e

Piezo electric materials are anisotropic crystals meeting certain
symmetry conditions like crystalline quartz (SiO2): the effect is
linear.

 

The effect also works in reverse: Electrical fields induce
mechanical deformation

 

Piezo electric materials have many uses, most prominent are
quartz oscillators and, recently, fuel injectors for Diesel engines.

 

    
Electrostriction also couples polarization and mechanical
deformation, but in a quadratic way and only in the direction
"electrical fields induce (very small) deformations". e  = 

∆l

l
 =  const · E2

The effect has little uses so far; it can be used to control very
small movements, e.g. for manipulations in the nm region.
Since it is coupled to electronic polarization, many materials
show this effect.

 

 
Ferro electric materials posses a permanent dipole moment in any
elementary cell that, moreover, are all aligned (below a critical
temperature).

BaTiO3 unit cell

There are strong parallels to ferromagnetic materials (hence the
strange name).

Ferroelectric materials have large or even very large (εr > 1.000)
dielectric constants and thus are to be found inside capacitors
with high capacities (but not-so-good high frequency
performance)

     
Pyro electricity couples polarization to temperature changes;
electrets are materials with permanent polarization, .... There are
more "curiosities" along these lines, some of which have been made
useful recently, or might be made useful - as material science and
engineering progresses.

  

  
Questionaire

Multiple Choice questions to all of 3.6
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3.7 Summary: Dielectrics

The dielectric constant εr "somehow" describes the interaction of
dielectric (i.e. more or less insulating) materials and electrical fields;
e.g. via the equations ⇒

D  = ε0 · εr  · E

C  = 
ε0 · εr · A

d

n  = (εr)½

D is the electrical displacement or electrical flux density,
sort of replacing E in the Maxwell equations whenever materials
are encountered.
C is the capacity of a parallel plate capacitor (plate area A,
distance d) that is "filled" with a dielectric with εr

 

n is the index of refraction; a quantity that "somehow" describes
how electromagnetic fields with extremely high frequency
interact with matter.
in this equaiton it is assumed that the material has no magnetic
properties at the frequency of light.

 

     
Electrical fields inside dielectrics polarize the material, meaning that
the vector sum of electrical dipoles inside the material is no longer
zero.

  

The decisive quantities are the dipole moment µ, a vector, and
the Polarization P, a vector, too.

 
μ  =  q · ξ

P  = 
Σµ

V

Note: The dipole moment vector points from the negative to the
positive charge - contrary to the electrical field vector!

 

The dipoles to be polarized are either already present in the
material (e.g. in H2O or in ionic crystals) or are induced by the
electrical field (e.g. in single atoms or covalently bonded
crystals like Si)

 

The dimension of the polarization P is [C/cm2] and is indeed
identical to the net charge found on unit area ion the surface of a
polarized dielectric.

 

     
The equivalent of "Ohm's law", linking current density to field
strength in conductors is the Polarization law: P  =  ε0 · χ · E

εr  = 1 + χ 

D  =  D0 + P   =  ε0 · E  +  P

The decisive material parameter is χ ("kee"), the dielectric
susceptibility

 

The "classical" flux density D and the Polarization are linked as
shown. In essence, P only considers what happens in the
material, while D looks at the total effect: material plus the field
that induces the polarization.

 

    
Polarization by necessity moves masses (electrons and / or atoms)
around, this will not happen arbitrarily fast.

εr or χ thus must be functions of the frequency of the applied
electrical field, and we want to consider the whole frequency
range from RF via HF to light and beyond.

 εr(ω) is called the "dielectric function" of
the material.

The tasks are:

Identify and (quantitatively) describe the major mechanisms of
polarization.
Justify the assumed linear relationship between P and χ.
Derive the dielectric function for a given material.

  

     

(Dielectric) polarization mechanisms in dielectrics are all
mechanisms that

Induce dipoles at all (always with µ in field direction)
⇒ Electronic polarization.

1.

Induce dipoles already present in the material to "point" to
some extent in field direction.
⇒ Interface polarization.

2.

1.

2.
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(Dielectric) polarization mechanisms in dielectrics are all
mechanisms that

Induce dipoles at all (always with µ in field direction)
⇒ Electronic polarization.

1.

Induce dipoles already present in the material to "point" to
some extent in field direction.
⇒ Interface polarization.
⇒ Ionic polarization.
⇒ Orientation polarization.

2.

Quantitative considerations of
polarization mechanisms yield

Justification (and limits) to
the P ∝ E "law"
Values for χ
χ = χ(ω)
χ = χ(structure)

   
Electronic polarization describes the separation of the centers of
"gravity" of the electron charges in orbitals and the positive charge
in the nucleus and the dipoles formed this way. it is always
present

It is a very weak effect in (more or less isolated) atoms or ions
with spherical symmetry (and easily calculated).

 

It can be a strong effect in e.g. covalently bonded materials
like Si (and not so easily calculated) or generally, in solids.

 

 
Ionic polarization describes the net effect of changing the distance
between neighboring ions in an ionic crystal like NaCl (or in
crystals with some ionic component like SiO2) by the electric field

Polarization is linked to bonding strength, i.e. Young's
modulus Y. The effect is smaller for "stiff" materials, i.e.
P ∝ 1/Y

     
Orientation polarization results from minimizing the free enthalpy of
an ensemble of (molecular) dipoles that can move and rotate
freely, i.e. polar liquids.

Without field With field

It is possible to calculate the effect, the result invokes the
Langevin function

 

  

L(β)  =  coth (β)  –  
1

β

 

     
In a good approximation the polarization is given by ⇒  

<P> =  
N · μ2 ·E

3kT
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The induced dipole moment µ in all mechanisms is proportional to
the field (for reasonable field strengths) at the location of the atoms
/ molecules considered.

 
μ  =  α · Eloc

The proportionality constant is called polarizability α; it is a
microscopic quantity describing what atoms or molecules "do"
in a field.

 

The local field, however, is not identical to the macroscopic or
external field, but can be obtained from this by the Lorentz
approach

 

Eloc  =  Eex  +  Epol  +  EL  +  Enear

 

For isotropic materials (e.g. cubic crystals) one obtains

EL  =  
P

3εo

 

    
Knowing the local field, it is now possible to relate the microscopic
quantity α to the macroscopic quantity ε or εr via the Clausius -
Mosotti equations ⇒

N · α 

3 ε0

     =     
εr – 1

εr + 2
   

 = 
χ

χ + 3

While this is not overly important in the engineering practice, it
is a momentous achievement. With the Clausius - Mosotti
equations and what went into them, it was possible for the first
time to understand most electronic and optical properties of
dielectrics in terms of their constituents (= atoms) and their
structure (bonding, crystal lattices etc.)

 

Quite a bit of the formalism used can be carried over to other
systems with dipoles involved, in particular magnetism =
behavior of magnetic dipoles in magnetic fields.

     

Alternating electrical fields induce alternating forces for dielectric
dipoles. Since in all polarization mechanisms the dipole
response to a field involves the movement of masses, inertia will
prevent arbitrarily fast movements.

Above certain limiting frequencies of the electrical field, the
polarization mechanisms will "die out", i.e. not respond to
the fields anymore.

 

This might happen at rather high (= optical) frequencies,
limiting the index of refraction n = (εr)1/2

 

    
The (only) two physical mechanisms governing the movement of
charged masses experiencing alternating fields are relaxation
and resonance.
Relaxation describes the decay of excited states to the ground
state; it describes, e.g., what happens for orientation
polarization after the field has been switched off.

 

From the "easy to conceive" time behavior we deduce the
frequency behavior by a Fourier transformation

 

The dielectric function describing relaxation has a typical
frequency dependence in its real and imaginary part ⇒

 

 
Resonance describes anything that can be modeled as a mass
on a spring - i.e. electronic polarization and ionic polarization.
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Resonance describes anything that can be modeled as a mass
on a spring - i.e. electronic polarization and ionic polarization.

 

The decisive quantity is the (undamped) resonance
frequency ω 0 = ( kS/ m)½ and the "friction" or damping
constant kF
The "spring" constant is directly given by the restoring
forces between charges, i.e. Coulombs law, or (same thing)
the bonding. In the case of bonding (ionic polarization) the
spring constant is also easily expressed in terms of Young's
modulus Y. The masses are electron or atom masses for
electronic or ionic polarization, respectively.

 

The damping constant describes the time for funneling off
("dispersing") the energy contained in one oscillating mass
to the whole crystal lattice. Since this will only take a few
oscillations, damping is generally large.

 

The dielectric function describing relaxation has a typical
frequency dependence in its real and imaginary part ⇒
The green curve would be about right for crystals.

 

    
The complete frequency dependence of the dielectric behavior of
a material, i.e. its dielectric function, contains all mechanisms
"operating" in that material.

 

As a rule of thumb, the critical frequencies for relaxation
mechanisms are in theGHz region, electronic polarization
still "works" at optical (1015 Hz) frequencies (and thus is
mainly responsible for the index of refraction).
Ionic polarization has resonance frequencies in between.  

Interface polarization may "die out" already a low
frequencies.

 

A widely used diagram with all mechanisms shows this, but
keep in mind that there is no real material with all 4 major
mechanisms strongly present!
⇒

 

    
A general mathematical theorem asserts that the real and
imaginary part of the dielectric function cannot be completely
independent

 

ε'(ω)  =  
– 2 ω

π
  

∞
⌠
⌡
0

 
ω* · ε''(ω*)

ω*2– ω2
· dω*

ε''(ω)  =  
2 ω

π
  

∞
⌠
⌡
0

 
ε'(ω*)

ω*2– ω2
· dω*  

If you know the complete frequency dependence of either
the real or the imaginary part, you can calculate the
complete frequency dependence of the other.

 

This is done via the Kramers-Kronig relations; very useful
and important equations in material practice.
⇒

 

     

The frequency dependent current density j flowing
through a dielectric is easily obtained. ⇒

j(ω)  = 
dD

dt
= ε(ω) ·

dE

dt
  =  ω · ε'' · E(ω)  +  i · ω · ε' · E(ω)

    in phase  out of phase

The in-phase part generates active power and
thus heats up the dielectric, the out-of-phase
part just produces reactive power

 

The power losses caused by a dielectric are
thus directly proportional to the imaginary
component of the dielectric function

 

LA  =  power turned
into heat   =  ω · |ε''| · E2
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The relation between active and reactive power is
called "tangens Delta" (tg(δ)); this is clear by looking
at the usual pointer diagram of the current

LA

LR

 := tg δ  =  
IA

IR
 =  

ε''

ε'

 

 
 The pointer diagram for an ideal dielectric σ(ω =

0) = 0can always be obtained form an (ideal)
resistor R(ω) in parallel to an (ideal) capacitor
C(ω).

 

R(ω) expresses the apparent conductivity
σDK(ω) of the dielectric, it follows that

 

σDK(ω)  = ω · ε''(ω)
 

     
For a real dielectric with a non-vanishing conductivity
at zero (or small) frequencies, we now just add
another resistor in parallel. This allows to express all
conductivity effects of a real dielectric in the
imaginary part of its (usually measured) dielectric
function via

 

ε'' = 
σtotal

ω

We have no all materials covered with respect to
their dielectric behavior - in principle even
metals, but then resorting to a dielectric function
would be overkill.

 

 
A good example for using the dielectric function is
"dirty" water with a not-too-small (ionic) conductivity,
commonly encountered in food.

 

The polarization mechanism is orientation
polarization, we expect large imaginary parts of
the dielectric function in the GHz region.

 

It follows that food can be heated by microwave
(ovens)!

 

    

The first law of materials science obtains: At field strengths larger
than some critical value, dielectrics will experience (destructive)
electrical breakdown

This might happen suddenly (then calls break-down) , with a
bang and smoke, or

 

it may take time - months or years - then called failure.  

Critical field strength may vary from < 100 kV/cm to > 10 MV /
cm.

  

   
Highest field strengths in practical applications do not necessarily
occur at high voltages, but e.g. in integrated circuits for very thin (a
few nm) dielectric layers

 
Example 1: TV set, 20 kV cable,
thickness of insulation = 2 mm. ⇒ E
= 100 kV/cm
Example 2: Gate dielectric in
transistor, 3.3 nm thick, 3.3 V
operating voltage. ⇒ E = 10 MV/cm

Properties of thin films may be quite different (better!) than bulk
properties!

 

 

Advanced Materials B, part 1 - script - Page 120



Electrical breakdown is a major source for failure of electronic
products (i.e. one of the reasons why things go "kaputt" (= broke)),
but there is no simple mechanism following some straight-forward
theory. We have:

  

Thermal breakdown; due to small (field dependent) currents
flowing through "weak" parts of the dielectric.

  

Avalanche breakdown due to occasional free electrons being
accelerated in the field; eventually gaining enough energy to
ionize atoms, producing more free electrons in a runaway
avalanche.

  

Local discharge producing micro-plasmas in small cavities,
leading to slow erosion of the material.

  

Electrolytic breakdown due to some ionic micro conduction
leading to structural changes by, e.g., metal deposition.

  

     

Polarization P of a dielectric material can also be induced by
mechanical deformation e or by other means.

P  =  const. · e

Piezo electric materials are anisotropic crystals meeting certain
symmetry conditions like crystalline quartz (SiO2): the effect is
linear.

 

The effect also works in reverse: Electrical fields induce
mechanical deformation

 

Piezo electric materials have many uses, most prominent are
quartz oscillators and, recently, fuel injectors for Diesel engines.

 

    
Electrostriction also couples polarization and mechanical
deformation, but in a quadratic way and only in the direction
"electrical fields induce (very small) deformations". e  = 

∆l

l
 =  const · E2

The effect has little uses so far; it can be used to control very
small movements, e.g. for manipulations in the nm region.
Since it is coupled to electronic polarization, many materials
show this effect.

 

 
Ferro electric materials posses a permanent dipole moment in any
elementary cell that, moreover, are all aligned (below a critical
temperature).

BaTiO3 unit cell

There are strong parallels to ferromagnetic materials (hence the
strange name).

Ferroelectric materials have large or even very large (εr > 1.000)
dielectric constants and thus are to be found inside capacitors
with high capacities (but not-so-good high frequency
performance)

     
Pyro electricity couples polarization to temperature changes;
electrets are materials with permanent polarization, .... There are
more "curiosities" along these lines, some of which have been made
useful recently, or might be made useful - as material science and
engineering progresses.

  

     
    Questionaire

Multiple Choice questions to all of 3
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4. Magnetic Materials

4.1 Definitions and General Relations

4.1.1 Fields, Fluxes and Permeability

4.1.2 Origin of Magnetic Dipoles

4.1.3 Classifications of Interactions and Types of Magnetism

4.1.4 Summary to: Magnetic Materials - Definitions and General Relations

4.2 Dia- and Paramagnetism

4.2.1 Diamagnetism

4.2.2 Paramagnetism

4.2.3 Summary to: Dia- and Paramagnetism

4.3 Ferromagnetism

4.3.1 Mean Field Theory of Ferromagnetism

4.3.2 Beyond Mean Field Theory

4.3.3 Magnetic Domains

4.3.4 Domain Movement in External Fields

4.3.5 Magnetic Losses and Frequency Behavior

4.3.6 Hard and Soft Magnets

4.3.7 Summary to: Ferromagnetism

4.4 Applications of Magnetic Materials

4.4.1 Everything Except Data Storage

4.4.2 Magnetic Data Storage

4.4.3 Summary to: Technical Materials and Applications

4.5. Summary: Magnetic Materials
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4. Magnetic Materials

4.1 Definitions and General Relations

4.1.1 Fields, Fluxes and Permeability

There are many analogies between dielectric and magnetic phenomena; the big difference being that (so far) there are
no magnetic "point charges", so-called magnetic monopoles, but only magnetic dipoles.

The first basic relation that we need is the relation between the magnetic flux density B and the magnetic field
strength H in vacuum. It comes straight from the Maxwell equations:

B  = µo · H

The symbols are:

B = magnetic flux density or magnetic induction,
µo = magnetic permeability of the vacuum = 4π · 10–7 Vs/Am = 1,26 · 10–6Vs/Am
H = magnetic field strength

.
The units of the magnetic field H and so on are

[H] = A/m
[B] = Vs/m2, with 1Vs/m2 = 1 Tesla.

B and H are vectors, of course.
103/4π  A/m used to be called 1 Oersted, and 1 Tesla equales 104 Gauss in the old system.

Why the eminent mathematician and scientist Gauss was dropped in favor of the somewhat shady figure Tesla
remains a mystery.

If a material is present, the relation between magnetic field strength and magnetic flux density becomes

B   =  µo · µr · H

with µr = relative permeability of the material in complete analogy to the electrical flux density and the
dielectric constant.
The relative permeability of the material µr is a material parameter without a dimension and thus a pure number (or
several pure numbers if we consider it to be a tensor as before). It is the material property we are after.

Again, it is useful and conventional to split B into the flux density in the vacuum plus the part of the material according
to

B  =  µo · H  +  J

With J = magnetic polarization in analogy to the dielectric case.

As a new thing, we now we define the magnetization M of the material as

M  = 
J 

µo

That is only to avoid some labor with writing. This gives us

B  = µo · (H + M)

Using the independent definition of B finally yields
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M  = (µr - 1) · H
   

M  := χmag · H

With χmag = (µr – 1) = magnetic susceptibility.

It is really straight along the way we looked at dielectric behavior; for a direct comparison use the link

The magnetic susceptibility χmag is the prime material parameter we are after; it describes the response of a material to
a magnetic field in exactly the same way as the dielectric susceptibility   χdielectr. We even chose the same
abbreviation and will drop the suffix most of the time, believing in your intellectual power to keep the two apart.

Of course, the four vectors H, B, J, M are all parallel in isotropic homogeneous media (i.e. in amorphous materials
and poly-crystals).
In anisotropic materials the situation is more complicated; χ and µr then must be seen as tensors. That should be
no surprise anymore.

We are left with the question of the origin of the magnetic susceptibility. There are no magnetic monopolesthat could
be separated into magnetic dipoles as in the case of the dielectric susceptibility, there are only magnetic dipoles to
start from.

Why there are no magnetic monopoles (at least none have been discovered so far despite extensive search) is one
of the tougher questions that you can ask a physicist; the ultimate answer seems not yet to be in. So just take it as
a fact of life.
In the next paragraph we will give some thought to the the origin of magnetic dipoles.
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4.1.2 Origin of Magnetic Dipoles

Where are magnetic dipoles coming from? The classical answer is simple: A magnetic moment m is generated
whenever a current flows in closed circle.

Of course, we will not mix up the letter m used for magnetic moments with the m*e , the mass of an electron, which
we also need in some magnetic equations.
For a current I flowing in a circle enclosing an area A, m is defined to be

m  =  I · A

This does not only apply to "regular" current flowing in a wire, but in the extreme also to a single electron circling
around an atom.

In the context of Bohrs model for an atom, the magnetic moment of such an electron is easily understood:

The current I carried by one electron orbiting the nucleus at the distance r with the frequency ν = ω/2π is
.

I  = e  ·  
ω

2π

The area A is π r2, so we have for the magnetic moment morb of the electron

morb  = e  ·  
ω

2π
 · π r2  =  ½ · e · ω · r 2

Now the mechanical angular momentum L is given by

L  =  m*e · ω · r 2

With m*e = mass of electron (the * serves to distinguish the mass m*e  from the magnetic moment me of the
electron), and we have a simple relation between the mechanical angular momentum L of an electron (which, if you
remember, was the decisive quantity in the Bohr atom model) and its magnetic moment m.

morb  =  –
e

2m*e
 · L

The minus sign takes into account that mechanical angular momentum and magnetic moment are antiparallel; as
before we note that this is a vector equation because both m and L are (polar) vectors.
The quantity e/2m*e is called the gyromagnetic relation or quotient; it should be a fixed constant relating m and
any given L.
However, in real life it often deviates from the value given by the formula. How can that be?

Well, try to remember: Bohr's model is a mixture of classical physics and quantum physics and far too simple to
account for everything. It is thus small wonder that conclusions based on this model will not be valid in all
situations.

In proper quantum mechanics (as in Bohr's semiclassical model) L comes in discrete values only. In particular, the
fundamental assumption of Bohr's model was L = n · , with n = quantum number = 1, 2, 3, 4, ...

It follows that morb must be quantized, too; it must come in multiples of

morb  =  
h · e  

4π · m*e
  =  mBohr =  9.27 · 10–24 Am2
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This relation defines a fundamental unit for magnetic dipole moments, it has its own name and is called a
Bohr magneton.
It is for magnetism what an elementary charge is for electric effects.

But electrons orbiting around a nucleus are not the only source of magnetic moments.

Electrons always have a spin s, which, on the level of the Bohr model, can be seen as a built-in angular momentum
with the value  · s. The spin quantum number s is ½, and this allows two directions of angular momentum and
magnetic moment , always symbolically written as .

s  = { +1/2

–1/2

It is possible, of course, to compute the circular current represented by a charged ball spinning around its axis if the
distribution of charge in the sphere (or on the sphere), is known, and thus to obtain the magnetic moment of the
spinning ball.

Maybe that even helps us to understand the internal structure of the electron, because we know its magnetic
moment and now can try to find out what kind of size and internal charge distribution goes with that value. Many of
the best physicists have tried to do exactly that.
However, as it turns out, whatever assumptions you make about the internal structure of the electron that will give
the right magnetic moment will always get you into deep trouble with other properties of the electron. There simply
is no internal structure of the electron that will explain its properties!
We thus are forced to simply accept as a fundamental property of an electron that it always carries a magnetic
moment of

me  =  
2 · h · e · s

4π · m*e
 =  ± mBohr

The factor 2 is a puzzle of sorts - not only because it appears at all, but because it is actually = 2.00231928. But
pondering this peculiar fact leads straight to quantum electrodynamics (and several Nobel prizes), so we will not go
into this here.

The total magnetic moment of an atom - still within the Bohr model - now is given by the (vector)sum of all the "orbital"
moments and the "spin" moments of all electrons in the atom, taking into account all the quantization rules; i.e. the
requirement that the angular momentums L cannot point in arbitrary directions, but only in fixed ones.
This is were it gets complicated - even in the context of the simple Bohr model. A bit more to that can be found in the
link. But there are few rules we can easily use:

All completely filled orbitals carry no magnetic moment because for every electron with spin s there is a one with
spin -s, and for every one going around "clockwise", one will circle "counter clockwise". This means:
Forget the inner orbitals - everything cancels!

Spins on not completely filled orbitals tend to maximize their contribution; they will first fill all available energy states
with spin up, before they team up and cancel each other with respect to magnetic momentum.
The chemical environment, i.e. bonds to other atoms, incorporation into a crystal, etc., may strongly change the
magnetic moments of an atom.

The net effect for a given (isolated) atom is simple. Either it has a magnetic moment in the order of a Bohr magneton
because not all contributions cancel - or it has none. And it is possible, (if not terribly easy), to calculate what will be
the case. A first simple result emerges: Elements with an even number of electrons have generally no magnetic
moment.
We will not discuss the rules for getting the permanent magnetic moment of a single atom from the interaction of spin
moments and orbital moments, but are going to look at the possible effects if you

bring atoms together to form a solid, or

subject solids to an external magnetic field H

A categorization will be given in the next paragraph.

Questionaire
Multiple Choice questions to 4.1.2
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4.1.3 Classifications of Interactions and Types of Magnetism

Dia-, Para-, and Ferromagnetism

We want to get an idea of what happens to materials in external magnetic fields. "Material", in contrast to a single atom,
means that we have plenty of (possibly different) atoms in close contact, i.e with some bonding. We can distinguish two
basic cases:

1. The atoms of the material have no magnetic moment of their own. This is generally true for about one half of the
elements; the ones with even atomic numbers and therefore an even number of electrons. The magnetic moments of
the spins tends to cancel; the atoms will only have a magnetic moment if there is an orbital contribution. Of course,
the situation may change if you look at ions in a crystal.
2. At least some of the atoms of the material have a magnetic moment. That covers the other half of the periodic
table: All atoms with an odd number of electrons will have one spin moment left over. Again, the situation may be
different if you look at ionic crystals.

Lets see what can happen if you consider interactions of the magnetic moments with each other and with a magnetic
field. First, we will treat the case of solids with no magnetic moments of their constituents, i.e. diamagnetic materials.

The following table lists the essentials

Diamagnetic Materials

Magnetic
moment? No

Internal
magnetic
interaction?

None

Response to
external field

Currents (and small magn. moments)
are induced by turning on the field
because the orbiting electrons are
slightly disturbed.
The induced magn. moments oppose
the field.
No temperature dependence
Mechanism analogous to electronic
polarisation in dielectrics,

The black arrows should be seen as being
very short!!!!

Value of µr
µr ≤≈ 1
in diamagnetic Small effect in
"regular" materials

µr = 0
in superconductors
(ideal diamagnet)

Value of B B ≤≈ µ0·H B = 0
in superconductors

Typical
materials

All elements with filled shells (always
even atomic number)

all noble gases, H2, Cu, H2O, NaCl, Bi, ...
Alkali or halogene ions

 
Since you cannot expose material to a magnetic field without encountering a changing field strength dH/dt (either by
turning on the field on or by moving the specimen into a field), currents will be induced that produce a magnetic field of
their own.

According to Lenz's law, the direction of the current and thus the field is always such as to oppose the generating
forces. Accordingly, the induced magnetic moment will be antiparallel to the external field.
This is called diamagnetism and it is a weak effect in normal materials.

There is an exception, however: Superconductors, i.e. materials with a resistivity = 0 at low temperatures, will have
their mobile charges responding without "resistance" to the external field and the induced magnetic moments will
exactly cancel the external field.

Superconductors (at least the "normal" ones (or "type I" as they are called) therefore are always perfectly field free -
a magnetic field cannot penetrate the superconducting material.
That is just as amazing as the zero resistance; in fact the magnetic properties of superconductors are just as
characteristic for the superconducting state of matter as the resistive properties.
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There will be a backbone II module for superconductors in due time

If we now look at materials where at least some of the atoms carry a permanent magnetic moment, we have to look first
at the possible internal interactions of the magnetic moments in the material and then at their interaction with an
external field. Two limiting cases can be distinguished.

1. Strong internal interaction (i.e. interaction energies » kT, the thermal energy). Ferromagnetism results

2. No or weak interaction. We have paramagnetic materials.

The first case of strong interaction will more or less turn into the second case at temperatures high enough so that kT
>> interaction energy, so we expect a temperature dependence of possible effects. A first classification looks like this:

Paramagnetic and Ferromagnetic Materials

Magnetic
moment?

Yes

Internal agnetic
interaction?

Strong Weak

Ordered regions? Yes No

This example shows a ferrimagnetic
material

Ordered magnetic structures that are
stable in time. Permanent

magnetization is obtained by the
(vector)

sum over the individual magnetic
moments.

Example for a paramagnetic material
Unordered magnetic structure,

fluctuating in time.
Averaging over time yields no

permanent magnetization

Response to
external field

A large component of the magnetic
moment may be in field direction

Small average orientation in field
direction.
Mechanism fully analogous to
orientation polarization for dielectrics

Kinds of ordering Many possibilities. Most common are
ferro-, antiferro-, and ferrimagnetism as
in the self-explaining sequence below:

Value of µr µr >> 1
for ferromagnets
µr ≈ 1
for anti-ferromagnets
µr > 1
for ferrimagnets

µr ≥≈1

T-dependence Paramagnetic above Curie
Temperature

Weak T-dependence

Paramagnetic
materials (at room
temperature)

Mn, Al, Pt, O2(gas and liquid), rare
earth ions, ...
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Ferromagnetic
materials (with
Curie- (or Neél) T)

Ferro elements:
Ferro technical:
Ferri:
Antiferro: (no technical uses)

Fe (770 0C), Co (1121 0C), Ni (358 0C),
Gd (16 0C)
"AlNiCo", Co5Sm, Co17Sm2, "NdFeB"
Fe3O4,
MnO (116 0C), NiO (525 0C), Cr (308
0C)

 
This table generated a lot of new names, definitions and question. It sets the stage for the dealing with the various
aspects of ferromagnetism (including ferri- and anti-ferro magnetism as well as some more kinds of internal magnetic
ordering. A few examples of ferromagnetic materials are given in the link.

There might be many more types of ordering: Any fixed relation between two vectors qualify. As an example,
moment 2 might not be parallel to moment 1 but off by x degrees; and the succession of many moments might form
a spiral pattern.
If you can think of some possible ordering (and it is not forbidden by some overruling law of nature), it is a safe bet
that mother nature has already made it in some exotic substance. But, to quote Richard Feynman:
"It is interesting to try to analyze what happens when a field is applied to such a spiral (of magnetic ordering) - all
the twistings and turnings that must go on in all those atomic magnets. (Some people like to amuse themselves
with the theory of these things!)" (Lectures on Physics, Vol II, 37-13; Feynmans emphasizes).

Well, we don't, and just take notice of the fact that there is some kind of magnetic ordering for some materials.

As far as the element are concerned, the only ferromagnets are: Fe, Ni, and Co. (Mn almost is one, but not quite).

Examples for antiferromagnets include Cr, ....

And there are many, many compounds, often quite strange mixtures (e.g. NdFeB or Sm2Co17), with remarkable
and often useful ferro-, ferri, antiferro, or,..., properties.
 

Temperature Dependence of Magnetic Behavior
  

How do we distinguish an antiferromagnetic material from a paramagnet or a diamagnet? They all appear not to be very
"magnetic" if you probe them with a magnetic field.

We have to look at their behavior in a magnetic field and at the temperature dependence of that behavior. Ordering
the atomic magnetic moments is, after all, a thermodynamical effect - it always has to compete with entropy - and
thus should show some specific temperature dependence.
There are indeed quite characteristic curves of major properties with temperature as shown below.

Magnetization
M = M(H)

Magnetic susceptibility
χmag = χmag(T)

Remarks

For diamagnets the
susceptibility is negative
and close to zero; and
there is no temperature
dependence.

For paramagnets, the
susceptibility is (barely)
larger than zero and
decreases with T.
Plotted as 1/χ(T) we
find a linear relationship.

For ferromagnets the
susceptibility is large;
the magnetization
increases massively
with H. Above a critical
temperature TCu, the
Curie temperature,
paramagnetic behavior
is observed.
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Antiferromagnets are
like paramagnets above
a critical temperature
TNe called Neél
temperature. Below
TNe the susceptibility is
small, but with a T-
dependence quite
different from
paramagnets.

Ferrimagnets behave
pretty much like
ferromagnets, except
that the effect tends to
be smaller. The 1/χ(T)
curve is very close to
zero below a critical
temperature, also called
Neél temperature.

Just for good measure, the behaviour of one of the more
exotic magnetic materials. Shown is a metamagnet,
behaving like a ferro magnet, but only above a critical
magnetic field strength.

 
The question now will be if we can understand at least some of these observations within the framework of some simple
theory, similar to what we did for dielectric materials

The answer is: Yes, we can - but only for the rather uninteresting (for engineering or applications) dia- and
paramagnets.
Ferro magnets, however, while extremely interesting electronic materials (try to imagine a world without them), are a
different matter. A real understanding would need plenty of quantum theory (and has not even been fully achieved
yet); it is far outside the scope of this lecture course. But a phenomenological theory, based on some assumptions
that we do not try to justify, will come straight out from the theory of the orientation polarization for dielectrics, and
that is what we are going to look at in the next subchapters.

Questionaire
Multiple Choice questions to 4.1.3
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4.1.4 Summary to: Magnetic Materials - Definitions and General Relations

The relative permeability µr of a material
"somehow" describes the interaction of magnetic (i.e.
more or less all) materials and magnetic fields H, e.g.
vial the equations ⇒

B   =  µo · µr · H

L  = 
µ0 · µr · A · w2

l

n  = (εr· µr)½

B is the magnetic flux density or magnetic
induction, sort of replacing H in the Maxwell
equations whenever materials are encountered.
L is the inductivity of a linear solenoid (also called
coil or inductor) with length l, cross-sectional area
A, and number of turns t, that is "filled" with a
magnetic material with µr.

 

n is still the index of refraction; a quantity that
"somehow" describes how electromagnetic fields
with extremely high frequency interact with
matter.
For all practical purposes, however, µr = 1 for
optical frequencies

 

     
Magnetic fields inside magnetic materials polarize the
material, meaning that the vector sum of magnetic
dipoles inside the material is no longer zero.

  

The decisive quantities are the magnetic dipole
moment m, a vector, and the magnetic
Polarization J, a vector, too.

 
B  =  µo · H  +  J

J  =  µo ·
Σm

V

M  = 
J 

µo

Note: In contrast to dielectrics, we define an
additional quantity, the magnetization M by
simply including dividing J by µo.

 

The magnetic dipoles to be polarized are either
already present in the material (e.g. in Fe, Ni or
Co, or more generally, in all paramagnetic
materials, or are induced by the magnetic fields
(e.g. in diamagnetic materials).

 

The dimension of the magnetization M is [A/m];
i.e. the same as that of the magnetic field.

 

     
The magnetic polarization J or the magnetization M
are not given by some magnetic surface charge,
because ⇒.

There is no such thing as a
magnetic monopole, the

(conceivable) counterpart of a
negative or positive electric

charge

     
The equivalent of "Ohm's law", linking current density
to field strength in conductors is the magnetic
Polarization law:

M  = (µr - 1) · H
   

M  := χmag · H

B  = µo · (H + M)

The decisive material parameter is χmag = (µr –
1) = magnetic susceptibility.

 

The "classical" induction B and the magnetization
are linked as shown. In essence, M only
considers what happens in the material, while B
looks at the total effect: material plus the field
that induces the polarization.

 

    
Magnetic polarization mechanisms are formally
similar to dielectric polarization mechanisms, but the
physics can be entirely different.

Atomic mechanisms of
magnetization are not directly

analogous to the dielectric case
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Magnetic moments originate from:   
The intrinsic magnetic dipole moments m of
elementary particles with spin is measured in
units of the Bohr magnetonmBohr.

 

mBohr  =  
h · e  

4π · m*e
  =  9.27 · 10–24 Am2

me   =  
2 · h · e · s

4π · m*e
 =  2 · s · m Bohr  =  ± mBohr

 The magnetic moment me of the electron is ⇒  

Electrons "orbiting" in an atom can be described
as a current running in a circle thus causing a
magnetic dipole moment; too

The total magnetic moment of an atom in a crystal (or
just solid) is a (tricky to obtain) sum of all
contributions from the electrons, and their orbits
(including bonding orbitals etc.), it is either:

  

Zero - we then have a diamagnetic material.  
Magnetic field induces dipoles,

somewhat analogous to elctronic
polarization in dielectrics.

Always very weak effect (except
for superconductors)

Unimportant for technical
purposes

In the order of a few Bohr magnetons - we have a
essentially a paramagnetic material.

 
Magnetic field induces some order

to dipoles; strictly analogous to
"orientation polarization" of

dielectrics.
Always very weak effect

Unimportant for technical
purposes

   
In some ferromagnetic materials spontaneous
ordering of magnetic moments occurs below the Curie
(or Neél) temperature. The important families are

Ferromagnetic materials ⇑⇑⇑⇑⇑⇑⇑
large µr, extremely important.
Ferrimagnetic materials ⇑⇓⇑⇓⇑⇓⇑
still large µr, very important.
Antiferromagnetic materials ⇑⇓⇑⇓⇑⇓⇑
µr ≈ 1, unimportant

 
Ferromagnetic materials:

Fe, Ni, Co, their alloys
"AlNiCo", Co5Sm, Co17Sm2,

"NdFeB"

    
There is characteristic temperature dependence of µr
for all cases

  

Questionnaire
Multiple Choice questions to all of 4.1
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4.2 Dia- and Paramagnetism

4.2.1 Diamagnetism

What is it Used for?

It is customary in textbooks of electronic materials to treat dia- and paramagnetism in considerable detail. Considering
that there is not a single practical case in electrical engineering where it is of any interest if a material is dia- or
paramagnetic, there are only two justifications for doing this:

Dia- and paramagnetism lend themselves to calculations (and engineers like to calculate things).

It helps to understand the phenomena of magnetism in general, especially the quantum mechanical aspects of it.

In this script we are going to keep the treatment of dia- and paramagnetism at a minimal level.

 

Diamagnetism - the Essentials

The first thing to note about diamagnetism is that all atoms and therefore all materials show diamagnetic behavior.

Diamagnetism thus is always superimposed on all other forms of magnetism. Since it is a small effect, it is hardly
noticed, however.
Diamagnetism results because all matter contains electrons - either "orbiting" the nuclei as in insulators or in the
valence band (and lower bands) of semiconductors, or being "free", e.g. in metals or in the conduction band of
semiconductors. All these electrons can respond to a (changing) magnetic field. Here we will only look at the (much
simplified) case of a bound electron orbiting a nucleus in a circular orbit.

The basic response of an orbiting electron to a changing magnetic field is a precession of the orbit, i.e. the polar vector
describing the orbit now moves in a circle around the magnetic field vector H:

The angular vector ω characterizing the blue orbit of the electron will
experience a force from the (changing) magnetic field that forces it into
a circular movement on the green cone.

Why do we emphasize "changing" magnetic fields? Because there is no way to bring matter into a magnetic field
without changing it - either be switching it on or by moving the material into the field.

What exactly happens to the orbiting electron? The reasoning given below follows the semi-classical approach
contained within Bohr's atomic model. It gives essentially the right results (in cgs units!).

The changing magnetic field, dH/dt, generates a force F on the orbiting electron via inducing a voltage and thus an
electrical field E. We can always express this as

F  =  m*e · a  = m*e ·  
dv

dt
  :=  e · E

With a = acceleration = dv/dt = e · E/m*e.

Since dH/dt primarily induces a voltage V, we have to express the field strength E in terms of the induced voltage V.
Since the electron is orbiting and experiences the voltage during one orbit, we can write:

E  = 
V

L

With L = length of orbit = 2π · r, and r = radius of orbit.

V is given by the basic equations of induction, it is
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V  =  –  
dΦ

dt

With Φ = magnetic flux = H · A; and A = area of orbit = π · r2. The minus sign is important, it says that the effect of
a changing magnetic fields will be opposing the cause in accordance with Lenz's law.

Putting everything together we obtain

dv

dt
  =  

e · E 

m*e

 =  
V · e 

L · m*e
 =  – 

e · r 

2 m*e

  ·  
dH

dt

The total change in v will be given by integrating:

∆v  =  

v2

⌠
⌡
v1

dv  =  – 
e · r 

2m*e
  · 

H
⌠
⌡
0

dH  =   – 
e · r · H 

2 m*e

The magnetic moment morb of the undisturbed electron was morb = ½ · e · v · r

By changing v by ∆v, we change morb by ∆morb, and obtain

∆morb  =  
e · r · ∆v

2
 =  – 

e2 · r 2 · H

4m*e

That is more or less the equation for diamagnetism in the primitive electron orbit model.

What comes next is to take into account that the magnetic field does not have to be perpendicular to the orbit plane
and that there are many electrons. We have to add up the single electrons and average the various effects.
Averaging over all possible directions of H (taking into account that a field in the plane of the orbit produces zero
effect) yields for the average induced magnetic moment almost the same formula:

∆morb = <∆morb>  = –  
e2 · <r>2 · H

6m*e

<r> denotes that we average over the orbit radii at the same time

Considering that not just one, but all z electrons of an atom participate, we get the final formula:

∆m = <∆morb>  =  – 
e2 · z · r 2 · H

6 m*e

The additional magnetization M caused by ∆m is all the magnetization there is for diamagnets; we thus we can drop
the ∆ and get

MDia  = 
<∆m>

V 

With the definition for the magnetic susceptibility χ = M/H we finally obtain for the relevant material parameter for
diamagnetism
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χdia  =  – 
e2 · z · <r> 2

6 m*e · V
 =  –  

e2 · z · <r> 2

6 m*e
 · ρatom

With ρatom = number of atoms per unit volume

Plugging in numbers will yield χ values around – (10–5 - 10–7) in good agreement with experimental values.
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4.2.2 Paramagnetism

The treatment of paramagnetism in the most simple way is exactly identical to the treatment of orientation polarization.
All you have to do is to replace the electric dipoles by magnetic dipoles, which we call magnetic moments.

We have permanent dipole moments in the material, they have no or negligible interaction between them, and they
are free to point in any direction even in solids.
This is a major difference to electrical dipole moments which can only rotate if the whole atom or molecule rotates;
i.e. only in liquids. This is why the treatment of magnetic materials focusses on ferromagnetic materials and why
the underlying symmetry of the math is not so obvious in real materials.
In an external magnetic field the magnetic dipole moments have a tendency to orient themselves into the field
direction, but this tendency is opposed by the thermal energy, or better entropy of the system.

Using exactly the same line of argument as in the case of orientation polarization, we have for the potential energy W of
a magnetic moment (or dipole) m in a magnetic field H

W(ϕ) =  –   µ0 · m · H  =  –   µ0 · m · H · cos ϕ

With ϕ = angle between H and m.

In thermal equilibrium, the number of magnetic moments with the energy W will be N[W(ϕ)], and that number is once
more given by the Boltzmann factor:

N[W(ϕ)]  =  c · exp –(W/kT)  =  c · exp  
m · µ0 · H · cos ϕ

kT
 = N(ϕ)

As befoere, c is some as yet undetermined constant.

As before, we have to take the component in field direction of all the moments having the same angle with H and
integrate that over the unit sphere. The result for the induced magnetization mind and the total magnetization M is the
same as before for the induced dielectric dipole moment:

mind  =  m  ·

coth β   –    

1

β 




        
M  = N · m · L(β)
        

β  = 
µ0 · m · H

kT 

   

With L(β) = Langevin function = cothβ – 1/β

 

The only interesting point is the magnitude of β. In the case of the orientation polarization it was ≤ 1  and we could use
a simple approximation for the Langevin function.

We know that m will be of the order of magnitude of 1 Bohr magneton. For a rather large magnetic field strength of
5 · 106 A/m, we obtain as an estimate for an upper limit β = 1.4 · 10–2, meaning that the range of β is even smaller
as in the case of the electrical dipoles.
We are thus justified to use the simple approximation L(β) = β/3 and obtain

M  =  N · m · (β/3)  = 
N · m2 · µ0 · H

3kT 

The paramagnetic susceptibility χ = M/H, finally, is
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χpara  = 
N · m2 · μ0

3kT 

Plugging in some typical numbers (A Bohr magneton for m and typical densities), we obtain χpara ≈ +10–3; i.e. an
exceedingly small effect, but with certain characteristics that will carry over to ferromagnetic materials:

There is a strong temperature dependence and it follows the "Curie law":

χpara  = 
const

T

Since ferromagnets of all types turn into paramagnets above the Curie temperature TC, we may simply expand
Curies law for this case to

χferro(T > TC)  = 
const* 

T  –  TC

In summary, paramagnetism, stemming from some (small) average alignement up of permanent magnetic dipoles
associated with the atoms of the material, is of no (electro)technical consequence. It is, however, important for
analytical purposes called "Electron spin resonance" (ESR) techniques.
There are other types of paramagnetism, too. Most important is, e.g., the paramagnetism of the free electron gas.
Here we have magnetic moments associated with spins of electrons, but in a mobile way - they are not fixed at the
location of the atoms

But as it turns out, other kinds of paramagnetism (or more precisely: calculations taking into account that magnetic
moments of atoms can not assume any orientation but only sone quantized ones) do not change the general
picture: Paramagnetism is a weak effect.
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4.2.3 Summary to: Dia- and Paramagnetism

Dia- and Paramagentic propertis of
materials are of no consequence
whatsoever for products of electrical
engineering (or anything else!)

Normal diamagnetic materials: χdia ≈ – (10–5 - 10–7)
Superconductors (= ideal diamagnets): χSC = – 1
Paramagnetic materials: χpara ≈ +10–3

Only their common denominator of
being essentially "non-magnetic" is of
interest (for a submarine, e.g., you
want a non-magnetic steel)

 

For research tools, however, these
forms of magnitc behavious can be
highly interesting ("paramagentic
resonance")

 

    
Diamagnetism can be understood in a
semiclassical (Bohr) model of the atoms
as the response of the current ascribed to
"circling" electrons to a changing magnetic
field via classical induction (∝ dH/dt).

The net effect is a precession of the
circling electron, i.e. the normal vector
of its orbit plane circles around on the
green cone. ⇒

 

The "Lenz rule" ascertains that
inductive effects oppose their source;
diamagnetism thus weakens the
magnetic field, χdia < 0 must apply.

 

 
Running through the equations gives a
result that predicts a very small effect. ⇒
A proper quantum mechanical treatment
does not change this very much.

χdia  =  – 
e2 · z · <r> 2

6 m*e
 · ρatom  ≈ – (10–5 - 10–7)

  
The formal treatment of paramagnetic
materuials is mathematically completely
identical to the case of orientation
polarization

 
W(ϕ) =  –   µ0 · m · H  =  –   µ0 · m · H · cos ϕ

Energy of magetic dipole in magnetic field

N[W(ϕ)]  =  c · exp –(W/kT)  =  c · exp  
m · µ0 · H · cos ϕ

kT
 = N(ϕ)

(Boltzmann) Distribution of dipoles on energy states

M  = N · m · L(β)
        

β  = 
µ0 · m · H

kT 

   

Resulting Magnetization with Langevin function L(β)
and argument β

 

The range of realistc β values (given by
largest H technically possible) is even
smaller than in the case of orientation
polarization. This allows tp
approximate L(β) by β/3; we obtain:

 

 

χpara  = 
N · m2 · μ0

3kT 

 

 

Insertig numbers we find that χpara is
indeed a number just slightly larger
than 0.
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4.3 Ferromagnetism

4.3.1 Mean Field Theory of Ferromagnetism

The Mean Field Approach

In contrast to dia- and paramagnetism, ferromagnetism is of prime importance for electrical engineering. It is, however,
one of the most difficult material properties to understand.

It is not unlike "ferro"electricity, in relying on strong interactions between neighbouring atoms having a permanent
magnetic moment m stemming from the spins of electrons.
But while the interaction between electric dipoles can, at least in principle, be understood in classical and semi-
classical ways, the interaction between spins of electrons is an exclusively quantum mechanical effect with no
classical analogon. Moreover, a theoretical treatment of the three-dimensional case giving reliable results still eludes
the theoretical physicists.
Here we must accept the fact that only Fe, Co, Ni (and some rare earth metals) show strong interactions between
spins and thus ferromagnetism in elemental crystals.
In compounds, however, many more substances exist with spontaneous magnetization coming from the coupling of
spins.

There is, however, a relatively simple theory of ferromagnetism, that gives the proper relations, temperature
dependences etc., - with one major drawback: It starts with an unphysical assumption.

This is the mean field theory or the Weiss theory of ferromagnetism. It is a phenomenological theory based on a
central (wrong) assumption:

Substitute the elusive spin - spin interaction between
electrons

by the interaction of the spins with a very strong magnetic
field.

In other words, pretend, that in addition to your external field there is a built-in magnetic field which we will call the
Weiss field. The Weiss field will tend to line up the magnetic moments - you are now treating ferromagnetism as an
extreme case of paramagnetism. The scetch below illustrates this

Of course, if the material you are looking at is a real ferromagnet, you don't have to pretend that there is a built-in
magnetic field, because there is a large magnetic field, indeed. But this looks like mixing up cause and effect! What you
want to result from a calculation is what you start the calculation with!

This is called a self-consistent approach. You may view it as a closed circle, where cause and effect loose their
meaning to some extent, and where a calculation produces some results that are fed back to the beginning and
repeated until some parameter doesn't change anymore.
Why are we doing this, considering that this approach is rather questionable? Well - it works! It gives the right
relations, in particular the temperature dependence of the magnetization.

The local magnetic field Hloc for an external field Hext then will be

Hloc  = Hext  +  HWeiss

Note that this has not much to do with the local electrical field in the Lorentz treatment. We call it "local" field, too,
because it is supposed to contain everything that acts locally, including the modifications we ought to make to
account for effects as in the case of electrical fields. But since our fictitious "Weiss field" is so much larger than
everything coming from real fields, we simply can forget about that.
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Since we treat this fictive field HWeiss as an internal field, we write it as a superposition of the external field H and a
field stemming from the internal magnetic polarization J:

Hloc  =  Hext  +  w · J

With J = magnetic polarization and w = Weiss's factor; a constant that now contains the physics of the problem.

This is the decisive step. We now identify the Weiss field with the magnetic polarization that is caused by it. And, yes,
as stated above, we now do mix up cause and effect to some degree: the fictitiuos Weiss field causes the alignments of
the individual magnetic moments which than produce a magnetic polarization that causes the local field that we identify
with the Weiss field and so on.

But that, after all, is what happens: the (magnetic moments of the) spins interact causing a field that causes the
interaction, that ....and so on . If your mind boggles a bit, that is as it should be. The magnetic polarization caused
by spin-spin interactions and mediating spin-spin interaction just is - asking for cause and effect is a futile question.
The Weiss factor w now contains all the local effects lumped together - in analogy to the Lorentz treatment of local
fields, µ0, and the interaction between the spins that leads to ferromagnetism as a result of some fictive field.
But lets be very clear: There is no internal magnetic field HWeiss in the material before the spins become aligned.
This completely fictive field just leads - within limits - to the same interactions you would get from a proper quantum
mechanical treatment. Its big advantage is that it makes calculations possible if you determine the parameter w
experimentally.

All we have to do now is to repeat the calculations done for paramagnetism, substituting Hloc wherever we had H. Lets
see where this gets us.
 

Orientation Polarization Math with the Weiss Field

The potential energy W of a magnetic moment (or dipole) m in an external magnetic field H now becomes

W  =   – m · µ0 · (H  +  HWeiss) · cos ϕ
   

  =  – m · µ0 · (H  +  w · J ) · cosϕ

The Boltzmann distribution of the energies now reads

N(W)  = c · exp –
W

kT
  =  c · exp 

m · µ0 · (H  +  w · J) · cosϕ

kT 

The Magnetization becomes

M  = N · m · L(β)      
      

 = N · m · L 


m · µ0 · (H  +  w · J)

kT 




In the last equation the argument of L(β) is spelled out; it is quite significant that β contains w · J.

The total polarization is J = µ0 · M, so we obtain the final equation

J  =  N · m · µ0 · L(β)  =  N · m · µ0 · L 


m · µ0 · (H + w · J)

kT 




Written out in full splendor this is
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J  =  N · m · µ0 · coth 


m · µ0 · (H + w · J)

kT 


   –  

N · kT 

(H + w · J)

What we really want is the magnetic polarization J as a function of the external field H. Unfortunately we have a
transcendental equation for J which can not be written down directly without a "J" on the right-hand side.

What we also like to have is the value of the spontaneous magnetization J for no external field, i.e. for H = 0. Again,
there is no analytical solution for this case.
There is an easy graphical solution, however: We actually have two equations for which must hold at the same time:

The argument β of the Langevin function is

β  = 
m · µ0 · (H + w · J)

kT 

Rewritten for J, we get our first equation:

J  = 
kT  · β

w · m · µ0

 – 
H

w

This is simply a straight line with a slope and intercept value determined by the interesting variables H, w, and T.

On the other hand we have the equation for J, and this is our second independent equation
.

J  =   N · m · µ0 · L(β) = N · m · µ0 · L 


m · µ0 · (H + w · J)

kT 




This is simply the Langevin function which we know for any numerical value for β

All we have to do is to draw both functions in a J - β diagram

We can do that by simply putting in some number for β and calculating the results. The intersection of the two
curves gives the solutions of the equation for J.
This looks like this

Without knowing anything about β, we can draw a definite conclusion:

For H = 0 we have two solutions (or none at all, if the straight line is too steep): One for J = 0 and one for a rather
large J.
It can be shown that the solution for J = 0 is unstable (it disappears for an arbitrarily small field H) so we are left with
a spontaneous large magnetic polarization without an external magnetic field as the first big result of the mean field
theory.

We can do much more with the mean field theory, however.
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First, we note that switching on an external magnetic field does not have a large effect. J increases somewhat, but
for realistic values of H/w the change remains small.
Second, we can look at the temperature dependence of J by looking at the straight lines. For T → 0, the
intersection point moves all the way out to infinity. This means that all dipoles are now lined up in the field and L(β)
becomes 1. We obtain the saturation value Jsat

Jsat  = N · m · µ0

Third, we look at the effect of increasing temperatures. Raising T increases the slope of the straight line, and the
two points of intersection move together. When the slope is equal to the slope of the Langevin function (which, as
we know, is 1/3), the two points of solution merge at J = 0; if we increase the slope for the straight line even more
by increasing the temperature by an incremental amount, solutions do no longer exist and the spontaneous
magnetization disappears.

This means, there is a critical temperature above which ferromagnetism disappears. This is, of course, the Curie
temperature TC.

At the Curie temperature TC, the slope of the straight line and the slope of the Langevin function for β = 0 must be
identical. In formulas we obtain:

 
dJ

dβ
  =   

kTC

w · m · µ0

 =  slope of the straight line  

dJ

dβ

β = 0

  =  N · m · µ0 ·
dL(β)

dβ
 = 

N · m · µ0

3
 

We made use of our old insight that the slope of the Langevin function for β → 0 is 1/3.

Equating both slopes yields for TC

TC  = 
N · m 2 · µ02 · w

3k

This is pretty cool. We did not solve an transcendental equation nor go into deep quantum physical calculations, but still
could produce rather simple equations for prime material parameters like the Curie temerature.

If we only would know w, the Weiss factor! Well, we do not know w, but now we can turn the equation around: If we
know TC, we can calculate the Weiss factor w and thus the fictive magnetic field that we need to keep the spins in
line.
In Fe, for example, we have TC = 1043 K, m = 2,2 · mBohr. It follows that

HWeiss  = w · J  =  1.7 · 109 A/m

This is a truly gigantic field strength telling us that quantum mechanical spin interactions, if existent, are not to be
laughed at.
If you do not have a feeling of what this number means, consider the unit of H: A field of 1,7 · 109 A/m is produced if
a current of 1,7 · 109 A flows through a loop (= coil) with 1 m2 area. Even if you make the loop to cover only 1 cm2,
you still need 1,7 · 105 A.

We can go one step further and approximate the Langevin function again for temperatures >TC, i.e. for β < 1 by

 

L(β)  ≈ 
β

3

This yields
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J(T > TC)  ≈ 
N · m2 · µ02

3kT
 ·  (H  +  w · J)

From the equation for TC we can extract w and insert it, arriving at

J(T > TC)  ≈ 
N · m2 · µ02

3k(T  – TC)
 ·  H

Dividing by H gives the susceptibility χ for T > TC and the final formula

χ  = 
J

H
 = 

N · m2 · µ02

3k · (T  – TC)
 = 

const. 

T  –  TC

This is the famous Curie law for the paramagnetic regime at high temperatures which was a phenomenological thing
so far. Now we derived it with a theory and will therefore call it Curie - Weiss law.

In summary, the mean field approach ain't that bad! It can be used for attacking many more problems of ferromagnetism,
but you have to keep in mind that it is only a description, and not based on sound principles.

Questionaire
Multiple Choice questions to 4.3.1
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4.3.2 Beyond Mean Field Theory

Some General Considerations

According to the mean field theory, if a material is ferromagnetic, all magnetic moments of the atoms would be coupled
and point in the same direction. We now ask a few questions:

1. Which direction is that going to be for a material just sitting there? Is there some preferred internal direction or are
all directions equal? In other words: Do we have to make the fictitious Weiss field HWeiss larger in some directions
compared to other ones? Of course, we wonder if some crystallographic directions have "special status".
2. What happens if an external field is superimposed in some direction that does not coincide with a preferred
internal direction?
3. What happens if it does? Or if the external field is parallel to the internal one, but pointing in the opposite
direction?

The (simple) mean field theory remains rather silent on those questions. With respect to the first one, the internal
alignment direction would be determined by the direction of the fictive field HWeiss, but since this field does not really
exist, each direction seems equally likely.

In real materials, however, we might expect that the direction of the magnetization is not totally random, but has
some specific preferences. This is certainly what we must expect for crystals.
A specific direction in real ferromagnetic materials could be the result of crystal anisotropies, inhomogeneities, or
external influences - none of which are contained within the mean field theory (which essentially treats perfectly
isotropic and infinitely large materials).

Real ferromagnetic materials thus are more complicated than suggested by the mean field theory - for a very general
reason:
Even if we can lower the internal energy U of a crystal by aligning magnetic moments, we still must keep in mind that
the aim is always to minimize the free enthalpy G = U – TS of the total system.

While the entropy part coming from the degree of orderliness in the system of magnetic moments has been taken
care of by the general treatment in the frame work of the orientation polarization, we must consider the enthalpy (or
energy) U of the system in more detail. So far we only minimized U with respect to single magnetic moments in the
Weiss field.
This is so because the mean field approach essentially relied on the fact that by aligning the spins relative to the
(fictitious) Weiss field, we lower the energy of the individual spin or magnetic moments as treated before by some
energy Walign. We have

Ualign  =  Urandom  –   Walign

But, as discussed above, real materials are mostly (poly)crystals and we must expect that the real (quantum-
mechanical) interaction between the magnetic moments of the atoms are different for different directions in the
crystal. There is some anisotropy that must be considered in the Ualign part of the free enthalpy.
Moreover, there are other contributions to U not contained in the mean field approach. Taken everything together
makes quantitative answers to the questions above exceedingly difficult.

There are, however, a few relatively simple general rules and experimental facts that help to understand what really
happens if a ferromagnetic material is put into a magnetic field. Let's start by looking at the crystal anisotropy.

Crystal Anisotropy
  

Generally, we must expect that there is a preferred crystallographic direction for the spontaneous magnetization, the so-
called "easy directions". If so, it would need some energy to change the magnetization direction into some other
orientations; the "hard directions".

That effect, if existent, is easy to measure: Put a single crystal of the ferromagnetic material in a magnetic field H
that is oriented in a certain crystal direction, and measure the magnetization of the material in that direction:
If it happens to be an easy direction, you should see a strong magnetization that reaches a saturation value -
obtained when all magnetic moments point in the desired direction - already at low field strength H. If, on the other
hand, H happens to be in a hard direction, we would expect that the magnetization only turns into the H direction
reluctantly, i.e. only for large values of H will we find saturation.

This is indeed what is observed, classical data for the elemental ferromagnets Fe, Ni, Co are shown below:
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Anisotropy of magnetization
in Fe. Anisotropy of magnetization in Ni.

Anisotropy of magnetization
in Co.

Anisotropy of the magnetization in
Fe (bcc lattice type), Ni (fcc

lattice type), and Co (hcp lattice
type).

The curves are easy to interpret qualitatively along the lines stated above; consider, e.g., the Fe case:

For field directions not in <100>, the spins become aligned in the <100> directions pointing as closely as possible
in the external field direction.
The magnetization thus is just the component of the <100> part in the field direction; it is obtained for arbitrarily
small external fields.
Increasing the magnetization, however, means turning spins into a "hard" directions, and this will proceed
reluctantly for large magnetic fields.
At sufficiently large fields, however, all spins are now aligned into the external field directions and we have the same
magnetization as in the easy direction.

The curves above contain the material for a simple little exercise:

Exercise 4.3-2
Magnetic moments of Fe, Ni, Co

Questionaire
Multiple Choice questions to 4.3.2
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4.3.3 Magnetic Domains

Reducing the External Magnetic Field

If we now turn back to the question of what you would observe for the magnetization of a single crystal of ferromagnetic
material just sitting on your desk, you would now expect to find it completely magnetized in its easy direction - even in
the presence of a not overly strong magnetic field.

This would look somewhat like this:

 
There would be a large internal magnetization and a large external magnetic
field H - we would have an ideal permanent magnet.

  And we also would have a high energy situation, because the external
magnetic field around the material contains magnetic field energy Wfield.

  In order to make life easy, we do not care how large this energy is, even so
we could of course calculate it. We only care about the general situation:
We have a rather large energy outside the material caused by the perfect line
up of the magnetic dipoles in the material
How do we know that the field energy is rather large? Think about what will
happen if you put a material as shown in the picture next to a piece of iron
for example.
What we have is obviously a strong permanent magnet, and as we know it
will violently attract a piece of iron or just any ferromagnetic material. That
means that the external magnetic field is strong enough to line up all the
dipoles in an other ferromagnetic material, and that, as we have seen, takes
a considerable amount of energy.

  
The internal energy U of the system thus must be written

 

Ualign  =  Urandom  –   Walign  +  Wfield

 
The question is if we can somehow lower Wfield substantially - possibly by spending some smaller amount of
energy elsewhere. Our only choice is to not exploit the maximum alignment energy Walign as it comes from perfect
alignment in one direction.
In other words, are there non-perfect alignments patterns that only cost a little bit Walign energy, but safe a lot of
Wfield energy? Not to mention that we always gain a bit in entropy by not being perfect?

The answer is yes - we simply have to introduce magnetic domains.

Magnetic domains are regions in a crystal with different directions of the magnetizations (but still pointing in one of
the easy directions); they must by necessity be separated by domain walls. The following figures show some
possible configurations

Both domain structures decrease the external field and thus Wfield because the flux lines now can close inside the
material. And we kept the alignment of the magnetic moments in most of the material, it only is disturbed in the domain
walls. Now which one of the two configurations shown above is the better one?

Not so easy to tell. With many domains, the magnetic flux can be confined better to the inside of the material, but
the total domain wall area goes up - we loose plenty of Walign.
The energy lost by non-perfect alignment in the domains walls can be expressed as a property of the domain wall,
as a domain wall energy. A magnetic domain wall, by definition a two-dimensional defect in the otherwise perfect
order, thus carries an energy (per cm2) like any other two-dimensional defect.
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There must be an optimum balance between the energy gained by reducing the external field, and the energy lost in
the domain wall energy. And all the time we must remember that the magnetization in a domain is always in an
easy direction (without strong external fields).

We are now at the end of our tether. While the ingredients for minimizing the system energy are perfectly clear,
nobody can calculate exactly what kind of stew you will get for a given case.

Calculating domain wall energies from first principles is already nearly hopeless, but even with experimental values
and for perfect single crystals, it is not simple to deduce the domain structure taking into account the anisotropy of
the crystal and the external field energy.

And, too make things even worse (for theoreticians) there are even more energetic effects that influence the domain
structure. Some are important and we will give them a quick look.

Magnetostriction and Interaction with Crystal Lattice Defects

The interaction between the magnetic moments of the atoms that produces alignment of the moments - ferromagnetism,
ferrimagnetism and so on - necessarily acts as a force between the atoms, i.e. the interaction energy can be seen as a
potential and the (negative) derivative of this potential is a force.

This interaction force must be added to the general binding forces between the atoms.

In general, we must expect it to be anisotropic - but not necessarily in the same way that the binding energy could
be anisotropic, e.g. for covalent bonding forces.
The total effect thus usually will be that the lattice constant is slightly different in the direction of the magnetic
moment. A cubic crystal may become orthorhombic upon magnetization, and the crystal changes dimension if the
direction of the magnetization changes.

A crystal "just lying there" will be magnetized in several directions because of its magnetic domains and the anisotropy
of the lattice constants averages out: A cubic crystal is still - on average - cubic, but with a slightly changed lattice
constant.

However, if a large external field Hex forces the internal magnetization to become oriented in field directions, the
material now (usually) responds by some contraction in field direction (no more averaging out); this effect is called
magnetostriction. This word is generally used for the description of the effect that the interatomic distances are
different if magnetic moments are aligned.
The amount of magnetostriction is different for different magnetic materials, again there are no straight forward
calculations and experimental values are used. It is a complex phenomena.
Magnetostriction is a useful property; especially since recently "giant magnetostriction" has been discovered.
Technical uses seem to be just around the corner at present.

Magnetostriction also means that a piece of crystal that contains a magnetic domain would have a somewhat different
dimension as compared to the same piece without magnetization.

Lets illustrate that graphically with an (oversimplified, but essentially correct) picture:

In this case the magnetostriction is perpendicular to the magnetization. The four domains given would assume the
shape shown on the right hand side.

Since the crystal does not come apart, there is now some mechanical strain and stress in the system. This has two far
reaching consequences

1. We have to add the mechanical energy to the energy balance that determines the domain structure, making the
whole thing even more complicated.
2. We will have an interaction of domain walls with structural defects that introduce mechanical stress and strain in
the crystal. If a domain wall moves across a dislocation, for example, it might relieve the stress introduced by the
dislocation in one position and increase it in some other position. Depending on the signs, there is an attractive or
repelling force. In any case, there is some interaction: Crystal lattice defects attract or repulse domain walls.

Generally speaking, both the domain structure and the movement of domain walls will be influenced by the internal
structure of the material. A rather perfect single crystal may behave magnetically quite differently from a polycrystal full
of dislocations.

This might be hateful to the fundamentalists among the physicists: There is not much hope of calculating the
domain structure of a given material from first principles and even less hope for calculating what happens if you
deform it mechanically or do something else that changes its internal structure.
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However, we have the engineering point of view:

This is
great

The complicated situation with respect to domain formation and movement means that there are many ways to
influence it.
We do not have to live with a few materials and take them as they are, we have many options to tailor the material
to specific needs. Granted, there is not always a systematic way for optimizing magnetic materials, and there might
be much trial and error - but progress is being made.

What a real domain structure looks like is shown in the picture below. Some more can be found in the link.

We see the domains on the surface of a single crystalline piece of Ni. How domains can be made visible is a long
story - it is not easy! We will not go into details here.

Summarizing what we have seen so far, we note:

1. The domain structure of a given magnetic material in equilibrium is the result of minimizing the free enthalpy
mostly with respect to the energy term.
2. There are several contributions to the energy; the most important ones being magnetic stray fields, magnetic
anisotropy, magnetostriction and the interaction of the internal structure with these terms.
3. The domain structure can be very complicated; it is practically impossible to calculate details. Moreover, as we
will see, it is not necessarily always the equilibrium structure!

But this brings us to the next subchapter, the movement of domain walls and the hysteresis curve.

Questionaire
Multiple Choice questions to 4.3.3

Advanced Materials B, part 1 - script - Page 148

http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_4/illustr/i4_3_1.html
http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_4/exercise/c4_3_3.html


4.3.4 Domain Movement in External Fields

Domain Movement in External Fields

What happens if we apply an external field to a ferromagnet with its equilibrium domain structure?

The domains oriented most closely in the direction of the external field will gain in energy, the other ones loose;
always following the basic equation for the energy of a dipole in a field.
Minimizing the total energy of the system thus calls for increasing the size of favorably oriented domains and
decreasing the size of unfavorably oriented ones. Stray field considerations still apply, but now we have an external
field anyway and the stray field energy looses in importance.
We must expect that the most favorably oriented domain will win for large external fields and all other domains will
disappear.
If we increase the external field beyond the point where we are left with only one domain, it may now even become
favorable, to orient the atomic dipoles off their "easy" crystal direction and into the field.
After that has happened, all atomic dipoles are in field direction - more we cannot do. The magnetization than
reaches a saturation value that cannot be increased anymore.

Schematically, this looks like as shown below:

Obviously, domain walls have to move to allow the new domain structure in an external magnetic field.

What this looks like in reality is shown below for a small single crystal of iron.

As noted before, domain walls interact with stress and strain in the lattice, i.e. with defects of all kinds. They will
become "stuck" (the proper expression for things like that is "pinned") to defects, and it needs some force to pry
them off and move them on. This force comes from the external magnetic field.

The magnetization curve that goes with this looks like this:
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For small external fields, the domain walls, being
pinned at some defects, just bulge out in the
proper directions to increase favorably oriented
domains and decrease the others. The
magnetization (or the magnetic flux B) increases
about linearly with H
At larger external fields, the domain walls
overcome the pinning and move in the right
direction where they will become pinned by other
defects. Turning the field of will not drive the walls
back; the movement is irreversible.
After just one domain is left over (or one big one
and some little ones), increasing the field even
more will turn the atomic dipoles in field direction.
Since even under most unfavorable condition they
were at most 45o off the external direction, the
increase in magnetization is at most 1/cos(45o) =
1.41.
Finally, saturation is reached. All magnetic dipoles
are fully oriented in field direction, no further
increase is possible.

 

If we switch off the external field anywhere in the irreversible region, the domain walls might relax back a little, but for
achieving a magnetization of zero again, we must use force to move them back, i.e. an external magnetic field pointing
in the opposite direction.

In total we obtain the well known hysteresis behavior as shown in the hysteresis curve below.

 
The resulting hysteresis curve has two particular prominent features:

The remaining magnetization for zero external field, called the
remanence MR, and
the magnitude of the external field needed to bring the magnetization
down to zero again. This is called coercivity or coercive field
strength HC.

Remanence and coercivity are two numbers that describe the major
properties of ferromagnets (and, of course, ferrimagnets, too). Because the
exact shape of the hysteresis curve does not vary too much.
Finally, we may also address the saturation magnetization MS as a third
property that is to some extent independent of the other two.

 
Technical optimization of (ferro)magnetic materials first always focuses on these two numbers (plus, for reasons to
become clear very soon, the resistivity).
We now may also wonder about the dynamic behaviour, i.e. what happens if we change the external field with ever
increasing frequency.
 

Domain Wall Structure
  

The properties of the domain walls, especially their interaction with defects (but also other domain walls) determine most
of the magnetic properties of ferromagnets.

What is the structure of a domain wall? How can the magnetization change from one direction to another one?

There are two obvious geometric ways of achieving that goal - and that is also what really happens in practically all
materials. This is shown below.
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What kind of wall will be found in real magnetic materials? The answer, like always is: Whichever one has the smallest
(free) energy

In most bulk materials, we find the Bloch wall: the magnetization vector turns bit by bit like a screw out of the
plane containing the magnetization to one side of the Bloch wall.
In thin layers (oft the same material), however, Neél walls will dominate. The reason is that Bloch walls would
produce stray fields, while Neél walls can contain the magnetic flux in the material.

Both basic types of domain walls come in many sub-types, e.g. if the magnetization changes by some defined angle
other than 180o. In thin layers of some magnetic material, special domain structures may be observed, too.
The interaction of domain walls with magnetic fields, defects in the crystal (or structural properties in amorphous
magnetic materials), or intentionally produced structures (like "scratches", localized depositions of other materials, etc.,
can become fantastically complicated.

Since it is the domain structure together with the response of domain walls to these interactions that controls the
hystereses curve and therefore the basic magnetic properties of the material, things are even more complicated as
described before.
But do keep in mind: The underlying basic principles is the minimization of the free enthalpy, and there is nothing
complicated about this. The fact that we can no easily write down the relevant equations, no to mention solving
them, does not mean that we cannot understand what is going on. And the material has no problem in solving
equations, it just assumes the proper structure, proving that there are solutions to the problem.

Questionaire
Multiple Choice questions to 4.3.4
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4.3.5 Magnetic Losses and Frequency Behavior

General Remarks

So far we have avoided to consider the frequency behavior of the magnetization, i.e. we did not discuss what happens if
the external field oscillates!

The experience with electrical polarization can be carried over to some magnetic behaviour, of course. In particular,
the frequency response of paramagnetic material will be quite similar to that of electric dipole orientation, and
diamagnetic materials show close parallels to the electronic polarization frequency behaviour.
Unfortunately, this is of (almost) no interest whatsoever. The "almost" refers to magnetic imaging employing
magnetic resonance imaging (MRI) or nuclear spin resonance imaging - i.e. some kind of "computer
tomography". However, this applies to the paramagnetic behavior of the magnetic moments of the nuclei, something
we haven't even discussed so far.

What is of interest, however, is what happens in a ferromagnetic material if you have expose it to an changing, i.e.
oscillating magnetic field. H = Ho · exp(iωt)

Nothing we discussed for dielectrics corresponds to this questions. Of course, the frequency behavior of ferroelectric
materials would be comparable, but we have not discussed this topic.
Being wise from the case of dielectric materials, we suspect that the frequency behavior and some magnetic
energy losses go in parallel, as indeed they do.

In contrast to dielectric materials, we will start with looking at magnetic losses first.

 

Hystereses Losses

If we consider a ferromagnetic material with a given hysteresis curve exposed to an oscillating magnetic field at low
frequencies - so we can be sure that the internal magnetization can instantaneously follow the external field - we may
consider two completely independent mechanisms causing losses.

1. The changing magnetic field induces currents wandering around in the material - so called eddy currents. This is
different from dielectrics, which we always took to be insulators: ferromagnetic materials are usually conductors.
2. The movement of domain walls needs (and disperses) some energy, these are the intrinsic magnetic losses or
hystereses losses.

Both effects add up; the energy lost is converted into heat. Without going into details, it is clear that the losses
encountered increase with

1. The frequency f in both cases, because every time you change the field you incur the same losses per cycle.

2. The maximum magnetic flux Bmax in both cases.

3. The conductivity σ = 1/ρ for the eddy currents, and

4. The magnetic field strength H for the magnetic losses.

More involved calculations (see the advanced module) give the following relation for the total ferromagnetic loss PFe per
unit volume of the material

PFe  ≈  Peddy  +  Physt  ≈ 
π · d2

6ρ
· (f · Bmax)2  +  2f · HC · Bmax

With d = thickness of the material perpendicular to the field direction, HC = coercivity.

It is clear what you have to do to minimize the eddy current losses:

Pick a ferromagnetic material with a high resistivity - if you can find one. That is the point where ferrimagnetic
materials come in. What you loose in terms of maximum magnetization, you may gain in reduced eddy losses,
because many ferrimagnets are ceramics with a high resistivity.
Make d small by stacking insulated thin sheets of the (conducting) ferromagnetic material. This is, of course, what
you will find in any run-of-the-mill transformer.

We will not consider eddy current losses further, but now look at the remaining hystereses losses Physt

The term HC · Bmax is pretty much the area inside the hystereses curve. Multiply it with two times the frequency,
and you have the hystereses losses in a good approximation.
In other words: There is nothing you can do - for a given material with its given hystereses curve.
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Your only choice is to select a material with a hystereses curve that is just right. That leads to several questions:

1. What kind of hystereses curve do I need for the application I have in mind?

2. What is available in terms of hystereses curves?

3. Can I change the hystereses curve of a given material in a defined way?

The answer to these questions will occupy us in the next subchapter; here we will just finish with an extremely cursory
look at the frequency behavior of ferromagnets.
 

Frequency Response of Ferromagnets

As already mentioned, we only have to consider ferromagnetic materials - and that means the back-and-forth movement
of domain walls in response to the changing magnetic field.

We do not have a direct feeling for how fast this process can happen; and we do not have any simplified equations,
as in the case of dielectrics, for the forces acting on domain walls. Note that the atoms do not move if a domain wall
moves - only the direction of the magnetic moment that they carry.
We know, however, from the bare fact that permanent magnets exist, or - in other words - that coercivities can be
large, that it can take rather large forces to move domain walls - they might not shift easily.
This gives us at least a feeling: It will not be easy to move domain walls fast in materials with a large coercivity; and
even for materials with low coercivity we must not expect that they can take large frequencies, e.g. in the optical
region
There are materials, however, that still work in the GHz region.

And that is where we stop. There simply is no general way to express the frequency dependence of domain wall
movements.

That, however, does not mean that we cannot define a complex magnetic permeability µ = µ' + iµ'' for a
particular magnetic material.
It can be done and it has been done. There simply is no general formula for it and that limits its general value.

Questionaire
Multiple Choice questions to 4.3.5
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4.3.6 Hard and Soft Magnets

Definitions

Lets quickly go over the three questions from the preceding sub-chapter

1. What kind of hystereses curve do I need for the application I have in mind?

Lets look at two "paradigmatic" applications: A transformer core and a magnetic memory.

The transformer core is ferromagnetic in order to "transport" a large magnetic flux B produced by the primary coil to
the secondary coil. What I want is that the induced flux B follows the primary field H as closely as possible.
In other words: There should be no hystereses loop - just a straight line, as shown below

 
The ideal curve, without any hystereses, does not exist. What you get is
something like the curve shown for a real soft magnet - because that is
what we call a material with a kind of slender hystereses curve and thus
small values of coercivity and remanence
If we switch on a positive field H and then go back to zero again, a little bit
of magnetization is left. For a rather small reverse field, the magnetic flux
reverses, too - the flux B follows H rather closely, if not exactly.
Hystereses losses are small, because the area enclosed in the
hystereses loop is small.
But some losses remain, and the "transformer core" industry will be very
happy if you can come up with a material that is just 1 % or 2 % "softer"
than what they have now.
Beside losses, you have another problem: If you vary H sinusoidally, the
output will be a somewhat distorted sinus, because B does not follow H
linearly. This may be a problem when transforming signals.

A soft magnetic material will obviously not make a good permanent magnet, because its remaining magnetization (its
remanence) after switching off the magnetic field H is small.

But a permanent magnet is what we want for a magnetic storage material. Here we want to induce a large
permanent magnetization by some external field (produced by the "writing head" of our storage device) that stays
intact for many years if needs be. Some more information about magnetic storage can be found in an extra module
It should be strong enough - even so it is contained in a tiny area of the magnetic material on the tape or the storage
disc - to produce a measurable effect if the reading head moves over it. It should not be too strong, however,
because that would make it too difficult to erase it if we want to overwrite it with something else. In short, it should
look like this
 

We can define what we want in terms of coercivity and remance. Ideally,
the hystereses curve is very "square.

At some minimum field, the magnetization is rather large and does not
change much anymore.

If we reverse the field direction, not much happens for a while, but as soon
as we move above slightly above the coercivity value, the magnetization
switches direction completely.

Ferromagnetic losses are unavoidable, we simply must live with them

 
Pretty much all possible applications - consult the list in the next section - either calls for soft or for hard magnets; there
isn't much in between.

So we now must turn to the second and third question:
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Tailoring Hystereses Curves
  

The question was: What is available in terms of hystereses curves? Good question; it immedately provokes another
questions:

What is available in terms of ferromagnetic materials? The kind of hystereses behavior you get is first of all a
property of the specific material you are looking at.
For arbitrary chemical compounds, there is little predictive power if they are ferromagnetic or not. In fact, the rather
safe bet is that some compound not containing Fe, Ni, or Co is not ferromagnetic.
Even if we restrict ourselves to some compound or alloy containing at least one of the ferromagnetic elements Fe,
Ni or Co, it is hard to predict if the result will be ferromagnetic and even harder to predict the kind of hystereses
curve it will have. Pure Fe in its (high temperature) fcc lattice variant is not magnetic, neither are most variants of
stainless steel, for example.

But progress has been made - triggered by an increasing theoretical understanding (there are theories, after all), lots of
experience and semi-theoretical guide lines - and just plain old trying out in the lab.

This is best demonstrated by looking at the "strength" of permanent magnets as it went up over the years:

Not bad. And pretty exotic materials emerged. Who thinks of Cobalt - Samarium compounds, or Neodymium - iron -
boron?

What will the future bring. Well, I don't know and you shall see!

But we can do a little exercise to get some idea of what might be possible

Exercise 6.3.1
Maximum Magnetization

The final question was: Can I change the hystereses curve of a given material in a defined direction?

The answer is: Yes, you can - within limits, of course.

The hystereses curve results from the relative ease or difficulty of moving domain walls in a given material. And
since domain walls interact with stress and strain in a material, their movement depends on the internal structure of
the material; on the kind and density of crystal lattice defects.

This is best illustrated by looking at hystereses curves of one and the same material with different internal structures.

  
There is a big difference for annealed, i.e. relatively defect free iron and
heavily deformed iron, i.e. iron full of dislocations, as the figure on the left
nicely illustrates

We will find similar behavior for most ferromagnetic materials (not for all,
however, because some are amorphous).

Instead of manipulating the defects in the materials to see what kind of
effect we get, we can simply put it under mechanical stress, e.g. by
pulling at it. This also may change the hystereses curve very much:
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Here we have the hystereses curves of pure Ni samples with and without mechanical tension. The effects are quite
remarkable

In this case the tension force was parallel to the
external field H

In this case the tension force was at right angles to
the external field H

There is a big change in the remanence, but not so
much difference in the coercivity.

Big changes in the remanence, not so much effect in
the coercivity. We have an almost box-like shape,
coming close to the ideal hard magnet from above.

The final word thus is:

There is a plethora of ways to design ferromagnetic properties out there. The trouble is, we are just learning now
how to do it a little bit better than by pure trial and error.
The future of magnetism looks bright. With an increased level of understanding, new materials with better properties
will result for almost sure. Time will tell.
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4.3.7 Summary to: Ferromagnetism

In ferromagnetic materials the magnetic
moments of the atoms are "correlated" or
lined-up, i.e. they are all pointing in the
same direction

The physical reason for this is a
quantum-mechanical spin-spin
interaction that has no simple
classical analogue.

 

However, exactly the same result -
complete line-up - could be obtained,
if the magnetic moments would feel a
strong magnetic field.

 

In the "mean field" approach or the
"Weiss" approach to
ferromagnetism, we simply assume
such a magnetic field HWeiss to be
the cause for the line-up of the
magnetic moments. This allows to
treat ferromagnetism as a "special"
case of paramagnetism, or more
generally, "orientation polarization".

 

    
For the magnetization we obtain ⇒

J  =  N · m · µ0 · L(β)  =  N · m · µ0 · L 


m · µ0 · (H + w · J)

kT 




The term w · J describes the Weiss
field via Hloc = Hext + w · J; the
Weiss factor w is the decisive (and
unknown) parameter of this
approach.

 

Unfortunately the resulting equation
for J, the quantity we are after,
cannot be analytically solved, i.e.
written down in a closed way.

 

    
Graphical solutions are easy, however ⇒  

From this, and with the usual
approximation for the Langevin
function for small arguments, we get
all the major ferromagnetic
properties, e.g.

Saturation field strength.
Curie temperature TC.

TC  = 
N · m 2 · µ02 · w

3k

Paramagnetic behavior above
the Curie temperature.
Strength of spin-spin
interaction via determining w
from TC.

 

As it turns out, the Weiss field would
have to be far stronger than what is
technically achievable - in other
words, the spin-spin interaction can
be exceedingly strong!
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In single crystals it must be expected that the alignments of the
magnetic moments of the atom has some preferred crystallographic
direction, the "easy" direction.

 
Easy directions:
Fe (bcc) <100>
Ni (fcc) <111>
Co (hcp) <001> (c-direction)

    
A single crystal of a ferromagnetic material with all magnetic
moments aligned in its easy direction would carry a high energy
because:

 

It would have a large external magnetic field, carrying field
energy.

 

In order to reduce this field energy (and other energy terms not
important here), magnetic domains are formed ⇒. But the energy
gained has to be "payed for" by:

 

Energy of the domain walls = planar "defects" in the
magnetization structure. It follows: Many small domains —>
optimal field reduction —> large domain wall energy "price".

 

In polycrystals the easy direction changes from grain to grain,
the domain structure has to account for this.
In all ferromagnetic materials the effect of magnetostriction
(elastic deformation tied to direction of magnetization) induces
elastic energy, which has to be minimized by producing a
optimal domain structure.

 

The domain structures observed thus follows simple principles but
can be fantastically complicated in reality ⇒.

 

   
For ferromagnetic materials in an external magnetic field, energy can
be gained by increasing the total volume of domains with
magnetization as parallel as possible to the external field - at the
expense of unfavorably oriented domains.

 

Domain walls must move for this, but domain wall movement is
hindered by defects because of the elastic interaction of
magnetostriction with the strain field of defects.
Magnetization curves and hystereses curves result ⇒, the shape
of which can be tailored by "defect engineering".

 

Domain walls (mostly) come in two varieties:

Bloch walls, usually found in bulk materials.
Neél walls, usually found in thin films.

 

 

    
Depending on the shape of the hystereses curve (and described by
the values of the remanence MR and the coercivity HC, we distinguish
hard and soft magnets ⇒.

 

Tailoring the properties of the hystereses curve is important because
magnetic losses and the frequency behavior is also tied to the
hystereses and the mechanisms behind it.

 

Magnetic losses contain the (trivial) eddy current losses
(proportional to the conductivity and the square of the frequency)
and the (not-so-trivial) losses proportional to the area contained in
the hystereses loop times the frequency.

 

The latter loss mechanism simply occurs because it needs work
to move domain walls.

 

It also needs time to move domain walls, the frequency response of
ferromagnetic materials is therefore always rather bad - most
materials will not respond anymore at frequencies far below GHz.
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  Questionaire

Multiple Choice questions to all of 4.3
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4.4 Applications of Magnetic Materials

4.4.1 Everything Except Data Storage

General Overview

What are typical applications for magnetic materials? A somewhat stupid question - after all we already touched on
several applications in the preceding subchapters.

But there are most likely more applications than you (and I) are able to name. In addition, the material requirements
within a specific field of application might be quite different, depending on details.
So lets try a systematic approach and list all relevant applications together with some key requirements. We use
the abbreviation MS, MR, and HC for saturation, remanence, and coercivity, resp., and low ω, medium ω, and high
ω with respect to the required frequency range.

Field of
application Products Requirements Materials

Soft Magnets

Power
conversion
electrical -
mechanical

Motors
Generators
Electromagnets

Large MR
Small HC
Low losses = small
conductivity
low ω

Fe based materials, e.g.
Fe + ≈ (0,7 - 5)% Si
Fe + ≈ (35 - 50)% CoPower adaption (Power) Transformers

Signal transfer

Transformer
("Überträger") Linear M - H curve

LF ("low" frequency; up
to ≈ 100 kHz)

Small conductivity
medium ω Fe + ≈ 36 % Fe/Ni/Co ≈ 20/40/40

HF ("high" frequency up
to ≈ 100 kHz)

Very small conductivity
high ω Ni - Zn ferrites

Magnetic field
screening "Mu-metal" Large dM/dH for H ≈ 0

ideally μr = 0 Ni/Fe/Cu/Cr ≈ 77/16/5/2

Hard Magnets

Permanent
magnets

Loudspeaker
Small generators
Small motors
Sensors

Large HC (and MR)

Fe/Co/Ni/Al/Cu ≈50/24/14/9/3
SmCo5
Sm2Co17
"NdFeB" (= Nd2Fe14B)

Data storage
analog

Video tape
Audio tape

Medium HC(and MR),
hystereses loop as
rectangular as possible

NiCo, CuNiFe,
CrO2
Fe2O3    

Data storage
digital

Ferrite core memory
Drum

Hard disc, Floppy disc

Bubble memory Special domain structure

Magnetic garnets (AB2O4, or
A3B5O12), e.g.
with A = Yttrium (or mixtures of
rare earth), and B = mixtures of
Sc, Ga, Al
Most common: Gd3Ga5O12

Specialities
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Quantum
devices

GMR reading head Special spin structures in
multilayered materialsMRAM

As far as materials are concerned, we are only scratching the surface here. Some more materials are listed in the link

Data storage is covered in a separate module, here we just look at the other applications a bit more closely.

 

Soft Ferromagnets

The general range of applications for soft magnets is clear from the table above. It is also clear that we want the
hystereses loop as "flat" as possible, and as steeply inclined as possible. Moreover, quite generally we would like the
material to have a high resistivity.

The requirements concerning the maximum frequency with which one can run through the hystereses loop are more
specialized: Most power applications do not need high frequencies, but the microwave community would love to
have more magnetic materials still "working" at 100 Ghz or so.

Besides trial and error, what are the guiding principles for designing soft magnetic materials? There are simple basic
answers, but it is not so simple to turn these insights into products:

Essentially, remanence is directly related to the ease of movement of domain walls. If they can move easily in
response to magnetic fields, remanence (and coercivity) will be low and the hystereses loop is flat.

The essential quantities to control, partially mentioned before, therefore are:

The density of domain walls. The fewer domain walls you have to move around, the easier it is going to be.

The density of defects able to "pin" domain walls. These are not just the classical lattice defects encountered in
neat single- or polycrystalline material, but also the cavities, inclusion of second phases, scratches, microcracks or
whatever in real sintered or hot-pressed material mixtures.
The general anisotropy of the magnetic properties; including the anisotropy of the magnetization ("easy" and "hard"
direction, of the magnetostriction, or even induced the shape of magnetic particles embedded in a non-magnetic
matrix (we must expect, e.g. that elongated particles behave differently if their major axis is in the direction of the
field or perpendicular to it). Large anisotropies generally tend to induce large obstacles to domain movement.

A few general recipes are obvious:

Use well-annealed material with few grain boundaries and dislocations. For Fe this works, as already shown before.

Align the grains of e.g. polycrystalline Fe-based material into a favorable direction, i.e. use materials with a texture.

Doing this by a rather involved process engineered by Goss for Fe and Fe-Si alloys was a major break-through
around 1934. The specific power loss due to hystereses could be reduced to about 2.0 W/kg for regular textured Fe
and to 0.2 W/kg for (very difficult to produce) textured Fe with 6% Si (at 50 Hz and B ≈ 1 T)
Use isotropic materials, in particular amorphous metals also called metallic glasses, produced by extremely fast
cooling from the melt. Stuff like Fe78B13Si19 is made (in very thin very long ribbons) and used.
Total losses of present day transformer core materials (including eddy current losses) are around 0,6 W/kg at 50 Hz
which, on the one hand, translates into an efficiency of 99,25 % for the transformer, and a financial loss of roughly 1
$/kg and year - which is not to be neglected, considering that big transformer weigh many tons.
 

Reduce the number of domains. One solution would be to
make very small magnetic particles that can only contain one
domain embedded in some matrix. This would work well if the
easy direction of the particles would always be in field
direction, i.e. if all particles have the same crystallographic
orientation pointing in the desired direction as shown below.

This picture, by the way, was calculated and is an example of
what can be done with theory. It also shows that single
domain magnets can have ideal soft or ideal hard behavior,
depending on the angle between an easy direction and the
magnetic field.

Unfortunately, for randomly oriented particles, you only get a
mix - neither here nor there.
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Well, you get the drift. And while you start thinking about some materials of your own invention, do not forget: We have
not dealt with eddy current losses yet, or with the resistivity of the material.

The old solution was to put Si into Fe. It increases the resistivity substantially, without degrading the magnetic
properties too much. However it tends to make the material brittle and very hard to process and texture.
The old-fashioned way of stacking thin insulated sheets is still used a lot for big transformers, but has clear limits
and is not very practical for smaller devices.
Since eddy current losses increase with the square of the frequency, metallic magnetic materials are simply not
possible at higher frequencies; i.e. as soon as you deal with signal transfer and processing in the kHz, MHz or even
GHz region. We now need ferrites.

Questionaire
Multiple Choice questions to 4.4.1
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4.4.2 Magnetic Data Storage

This topic was regularly handled in the Seminar and therfore not included here.

Since the Seminar has been abandoned, this page might be writtten in the near future - bear with me.
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4.4.3 Summary to: Technical Materials and Applications

Uses of ferromagnetic materials may be sorted according to:

Soft magnets; e.g. Fe - alloys  
Everything profiting from an
"iron core": Transformers,
Motors, Inductances, ...
Shielding magnetic fields.

Hard magnets; e.g. metal oxides or "strange" compounds.  
Permanent magnets for
loudspeakers, sensors, ...
Data storage (Magnetic
tape, Magnetic disc drives,
...

   
Even so we have essentially only Fe, Ni and Co (+ Cr, O and Mn in
compounds) to work with, innumerable magnetic materials with
optimized properties have been developed.

 
Strongest permanent magnets:
Sm2Co17
Nd2Fe14BNew complex materials (including "nano"materials) are needed

and developed all the time.
 

  
Data storage provides a large impetus to magnetic material
development and to employing new effects like "GMR"; giant
magneto resistance; a purely quantum mechanical effect.
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4.5. Summary: Magnetic Materials

The relative permeability µr of a material "somehow" describes the
interaction of magnetic (i.e. more or less all) materials and magnetic fields
H, e.g. vial the equations ⇒

B   =  µo · µr · H

L  = 
µ0 · µr · A · w2

l

n  = (εr· µr)½

B is the magnetic flux density or magnetic induction, sort of
replacing H in the Maxwell equations whenever materials are
encountered.
L is the inductivity of a linear solenoid, or )coil or inductor) with length
l, cross-sectional area A, and number of turns t, that is "filled" with a
magnetic material with µr.

 

n is still the index of refraction; a quantity that "somehow" describes
how electromagnetic fields with extremely high frequency interact with
matter.
For all practical purposes, however, µr = 1 for optical frequencies

 

     
Magnetic fields inside magnetic materials polarize the material, meaning
that the vector sum of magnetic dipoles inside the material is no longer
zero.

  

The decisive quantities are the magnetic dipole moment m, a vector,
and the magnetic Polarization J, a vector, too.

 
B  =  µo · H  +  J

J  = 
Σm

V

M  = 
J 

µo

Note: In contrast to dielectrics, we define an additional quantity, the
magnetization M by simply including dividing J by µo.

 

The magnetic dipoles to be polarized are either already present in the
material (e.g. in Fe, Ni or Co, or more generally, in all paramagnetic
materials, or are induced by the magnetic fields (e.g. in diamagnetic
materials).

 

The dimension of the magnetization M is [A/m]; i.e. the same as that
of the magnetic field.

 

     
The magnetic polarization J or the magnetization M are not given by some
magnetic surface charge, because ⇒. There is no such thing as a

magnetic monopole, the
(conceivable) counterpart of a
negative or positive electric

charge

     
The equivalent of "Ohm's law", linking current density to field
strength in conductors is the magnetic Polarization law: M  = (µr - 1) · H

   
M  := χmag · H

B  = µo · (H + M)

The decisive material parameter is χmag = (µr – 1) =
magnetic susceptibility.

 

The "classical" induction B and the magnetization are
linked as shown. In essence, M only considers what
happens in the material, while B looks at the total
effect: material plus the field that induces the
polarization.

 

    
Magnetic polarization mechanisms are formally similar to
dielectric polarization mechanisms, but the physics can be
entirely different.

Atomic mechanisms of
magnetization are not directly

analogous to the dielectric case

Magnetic moments originate from:   
The intrinsic magnetic dipole moments m of elementary
particles with spin is measured in units of the Bohr
magnetonmBohr.
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The intrinsic magnetic dipole moments m of elementary
particles with spin is measured in units of the Bohr
magnetonmBohr.

 

mBohr  =  
h · e  

4π · m*e
  =  9.27 · 10–24 Am2

me   =  
2 · h · e · s

4π · m*e
 =  2 · s · m Bohr  =  ± mBohr

 The magentic moment me of the electron is ⇒  

Electrons "orbiting" in an atom can be described as a
current running in a circle thus causing a magnetic
dipole moment; too

The total magentic moment of an atom in a crystal (or just
solid) is a (tricky to obtain) sum of all contributions from the
electrons, and their orbits (including bonding orbitals etc.), it
is either:

  

Zero - we then have a diamagmetic material .  
Magnetic field induces dipoles,

somewhat analogous to elctronic
polarization in dielectrics.

Always very weak effect (except
for superconductors)

Unimportant for technical
purposes

In the order of a few Bohr magnetons - we have a
essentially a paramagnetic material.

 
Magnetic field induces some order

to dipoles; strictly analogous to
"orientation polarizaiton" of

dielectrics.
Alsways very weak effect
Unimportant for technical

purposes

   
In some ferromagnetic materials spontaneous ordering of
magenetic moments occurs below the Curie (or Neél)
temperature. The important familiess are

Ferromagnetic materials ⇑⇑⇑⇑⇑⇑⇑
large µr, extremely important.
Ferrimagnetic materials ⇑⇓⇑⇓⇑⇓⇑
still large µr, very important.
Antiferromagnetic materials ⇑⇓⇑⇓⇑⇓⇑
µr ≈ 1, unimportant

 
Ferromagnetic materials:

Fe, Ni, Co, their alloys
"AlNiCo", Co5Sm, Co17Sm2,

"NdFeB"

    
There is characteristic temperatuer dependence of µr for all
cases

  

   

Dia- and Paramagentic propertis of
materials are of no consequence
whatsoever for products of electrical
engineering (or anything else!)

Normal diamagnetic materials: χdia ≈ – (10–5 - 10–7)
Superconductors (= ideal diamagnets): χSC = – 1
Paramagnetic materials: χpara ≈ +10–3

Only their common denominator of
being essentially "non-magnetic" is of
interest (for a submarine, e.g., you want
a non-magnetic steel)

 

For research tools, however, these
forms of magnitc behavious can be
highly interesting ("paramagentic
resonance")
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Diamagnetism can be understood in a
semiclassical (Bohr) model of the atoms as
the response of the current ascribed to
"circling" electrons to a changing magnetic
field via classical induction (∝ dH/dt).

The net effect is a precession of the
circling electron, i.e. the normal vector
of its orbit plane circles around on the
green cone. ⇒

 

The "Lenz rule" ascertains that
inductive effects oppose their source;
diamagnetism thus weakens the
magnetic field, χdia < 0 must apply.

 

 
Running through the equations gives a
result that predicts a very small effect. ⇒
A proper quantum mechanical treatment
does not change this very much.

χdia  =  – 
e2 · z · <r> 2

6 m*e
 · ρatom  ≈ – (10–5 - 10–7)

   
The formal treatment of paramagnetic
materuials is mathematically completely
identical to the case of orientation
polarization

 
W(ϕ) =  –   µ0 · m · H  =  –   µ0 · m · H · cos ϕ

Energy of magetic dipole in magnetic field

N[W(ϕ)]  =  c · exp –(W/kT)  =  c · exp  
m · µ0 · H · cos ϕ

kT
 = N(ϕ)

(Boltzmann) Distribution of dipoles on energy states

M  = N · m · L(β)
        

β  = 
µ0 · m · H

kT 

   

Resulitn Magnetization with Langevin function L(β) and argument β

 

The range of realistc β values (given by
largest H technically possible) is even
smaller than in the case of orientation
polarization. This allows tp approximate
L(β) by β/3; we obtain:

 

 

χpara  = 
N · m2 · μ0

3kT 

 

Insertig numbers we find that χpara is
indeed a number just slightly larger
than 0.

 

     

In ferromagnetic materials the magnetic moments of the atoms are
"correlated" or lined-up, i.e. they are all pointing in the same direction

The physical reason for this is a quantum-mechanical spin-spin
interaction that has no simple classical analogue.

 

However, exactly the same result - complete line-up - could be
obtained, if the magnetic moments would feel a strong magnetic field.

 

In the "mean field" approach or the "Weiss" approach to
ferromagnetism, we simply assume such a magnetic field HWeiss to
be the cause for the line-up of the magnetic moments. This allows to
treat ferromagnetism as a "special" case of paramagnetism, or more
generally, "orientation polarization".
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For the magnetization we obtain ⇒

J  =  N · m · µ0 · L(β)  =  N · m · µ0 · L 


m · µ0 · (H + w · J)

kT 




The term w · J describes the Weiss field
via Hloc = Hext + w · J; the Weiss factor
w is the decisive (and unknown)
parameter of this approach.

 

Unfortunately the resulting equation for J,
the quantity we are after, cannot be
analytically solved, i.e. written down in a
closed way.

 

    
Graphical solutions are easy, however ⇒  

From this, and with the usual approximation for the Langevin function
for small arguments, we get all the major ferromagnetic properties,
e.g.

Saturation field strength.
Curie temperature TC.

TC  = 
N · m 2 · µ02 · w

3k

Paramagnetic behavior above the Curie temperature.
Strength of spin-spin interaction via determining w from TC.

 

As it turns out, the Weiss field would have to be far stronger than what
is technically achievable - in other words, the spin-spin interaction can
be exceedingly strong!

 

 
In single crystals it must be expected that the alignments of the magnetic
moments of the atom has some preferred crystallographic direction, the
"easy" direction.

 
Easy directions:
Fe (bcc) <100>
Ni (fcc) <111>
Co (hcp) <001> (c-direction)

    
A single crystal of a ferromagnetic material with all magnetic moments
aligned in its easy direction would carry a high energy because:

 

It would have a large external magnetic field, carrying field energy.  

In order to reduce this field energy (and other energy terms not important
here), magnetic domains are formed ⇒. But the energy gained has to be
"payed for" by:

 

Energy of the domain walls = planar "defects" in the magnetization
structure. It follows: Many small domains —> optimal field reduction
—> large domain wall energy "price".

 

In polycrystals the easy direction changes from grain to grain, the
domain structure has to account for this.

In all ferromagnetic materials the effect of magnetostriction (elastic
deformation tied to direction of magnetization) induces elastic energy,
which has to be minimized by producing a optimal domain structure.

 

The domain structures observed thus follows simple principles but can be
fantastically complicated in reality ⇒.
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For ferromagnetic materials in an external magnetic field, energy can be
gained by increasing the total volume of domains with magnetization as
parallel as possible to the external field - at the expense of unfavorably
oriented domains.

 

Domain walls must move for this, but domain wall movement is
hindered by defects because of the elastic interaction of
magnetostriction with the strain field of defects.
Magnetization curves and hystereses curves result ⇒, the shape of
which can be tailored by "defect engineering".

 

Domain walls (mostly) come in two varieties:

Bloch walls, usually found in bulk materials.
Neél walls, usually found in thin films.

 

 

    
Depending on the shape of the hystereses curve (and described by the
values of the remanence MR and the coercivity HC, we distinguish hard
and soft magnets ⇒.

 

Tailoring the properties of the hystereses curve is important because
magnetic losses and the frequency behavior is also tied to the hystereses
and the mechanisms behind it.

 

Magnetic losses contain the (trivial) eddy current losses (proportional
to the conductivity and the square of the frequency) and the (not-so-
trivial) losses proportional to the area contained in the hystereses loop
times the frequency.

 

The latter loss mechanism simply occurs because it needs work to
move domain walls.

 

It also needs time to move domain walls, the frequency response of
ferromagnetic materials is therefore always rather bad - most materials will
not respond anymore at frequencies far below GHz.

 

     

Uses of ferromagnetic materials may be sorted according to:

Soft magnets; e.g. Fe - alloys  
Everything profiting from an
"iron core": Transformers,
Motors, Inductances, ...
Shielding magnetic fields.

Hard magnets; e.g. metal oxides or "strange" compounds.  
Permanent magnets for
loudspeakers, sensors, ...
Data storage (Magnetic
tape, Magnetic disc drives,
...

   
Even so we have essentially only Fe, Ni and Co (+ Cr, O and Mn in
compounds) to work with, innumerable magnetic materials with optimized
properties have been developed.

 
Strongest permanent magnets:
Sm2Co17
Nd2Fe14BNew complex materials (including "nano"materials) are needed and

developed all the time.
 

  
Data storage provides a large impetus to magnetic material development
and to employing new effects like "GMR"; giant magneto resistance; a
purely quantum mechanical effect.
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Questionaire

Multiple Choice questions to all of 4

   

Advanced Materials B, part 1 - script - Page 170

http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_4/exercise/c4_5_1.html


5. Optics

5.1 Basic Optics

5.1.1 What is Light?

5.1.2 Basic Geometric Optics

5.1.3 Basic Wave Optics

5.1.4 Energy Flow, Poynting Vector and Polarization

5.1.5 Summary to: 5.1 Optics

5.2 Optics and Materials

5.2.1 Interaction between Light and Matter

5.2.2 Fresnel Equations

5.2.3 The Complex Index of Refraction

5.2.4 Polarization and Materials

5.2.5 Not so Perfect Materials

5.2.6 Principles of Generating Light

5.2.7 Specialities

5.2.8 Summary to: Optics and Materials

5.3 Optical Components

5.3.1 Light Sources

5.3.2 Processing Light

5.3.3 Detecting Light

5.3.4 Summary to: Optical Components

5.4.1 Summary to: 5.1 Optics
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5. Optics

5.1 Basic Optics

5.1.1 What is Light?

What is light? You know the answer, of course. To refresh your memory, here is the definition:

Light is the common name for electromagnetic waves
with wavelengths just below a micrometer (400 nm - 800 nm).

Light is the common name for photons
with energies just above 1 eV (1,8 eV - 3,2 eV).

So we still have the good old dichotomy between the wave picture, championed by Huygens and the particle
picture first championed by Newton. As you know, Newton lost the fight but was redeemed to some extent by
Einstein in 1905. More to that in the link.

It is of course quantum theory that reconciles the otherwise incompatible viewpoints. Either you have some ideas how
this works or you don't. In the latter case you need to do some work on your own. I cannot go into this kind of "details"
here.

In case of doubt think about what you learned about "electron waves". For example the ψ = ψ0 · exp(ikr)
wavefunction for a free electron that turned a particle into a wave, and the |ψ|2 that turns a wave back into a particle.
It's just as easy for photons.
If you don't get it - tough luck! We're not doing quantum mechanics here. Just accept and follow the simple rule:

For the propagation of light:
use the wave model
For the generation and disappearance (= absorption) of
light:
use the photon model

Now we need to consider a few very basic numbers and relations.

The key properties and parameters that should come to mind when considering light propagating in vacuum or in
some transparent material with dieelectric constant εr, magnetic permeability μr (always ≈ 1 for optical frequencies)
and index of refraction n are:

Relations concerning light

 Propagation in vacuum Propagation in material with index of refraction n

Wavelength λ0 λ0/n

Frequency ν ν

Energy hν = ω hν = ω

Propagation speed
c0  = natural

constant   =  ν · λ

    
  =  (ε0 · μ0)–½

c(n)  =  
c0

n 

 =  
1 

(ε0εr · μ0μr)½

    
 n  =  (εr · μr)½   ≈  εr½

Wave vector
|k|  =  2π/λ0
  =  ω/c0

|k|  =  2π/λ   
  =  2πn/λ0 =  ω/c

Momentum p = k = ω/c0 p = k = ω/c

Snellius law n = sinα/sinβ with α, β the angle of incidence or propagation, resp.
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We can actually derive all the materials stuff and Snellius law as given in the last entry very easily by considering
energy and momentum conservation. We will do that in a litle exercise.

Exercise 5.1.1
Derivation of Snellius' law

The following table gives a few basic numbers for these quantities that you must know .

  
Numbers concerning light

 Rough order
of ten value Better value

Wavelength  ≈ 1 µm 500 nm (390 to 750 nm)

Frequency  ≈ 1015 Hz 5 · 1015 Hz

Energy  ≈ 1 eV 2.5 eV

c0 (vacuum)  300 000 km/s = 3 · 108 m/s

Momentum ratio
p(2,5 eV electron)

p(2,5 eV photon)
 ≈  103

The momentum entry serves to remind you that photons have very little momentum relative to electrons (and
phonons) of the same energy.

At a slightly higher level of sophistication we remember that light is an electromagnetic wave consisting of an interwoven
electric and magnetic field; E and H.

In complex notation (with the understanding that we only use the real part; in contrast to quantum theory) a standard
plane wave with amplitude E or H, wavelength λ = 2π/|k| and circle frequency ω that propagates in k direction
writes and looks as shown below.

E(r,t); H(r,t)  = E0; H0 · exp{i(kr –ωt)}

The electric or magnetic field are vector quantities, always perpendicular to each other. Light thus always has a
polarization vector associated with it, defined as the direction of the electric field vector (always perpendicular to
the propagation direction).

Where does light come from? The sun, of course, is a major producer of light and so is any other hot body. Max
Planck, as you know, first described the spectrum of light emitted by a hot "black body" in his famous work that was
the beginning of quantum theory. The link gives a short and simple derivation

What Planck calculated and what the sun actually does is shown in the following pictures.

The sun comes pretty close to a black-body spectrum and the same is true for a light bulb or any other light source
relying on high temperatures.
It is clear to a Materials Scientist or Engineer that the sun is hot because nuclear fusion going on in its interior
delivers the necessary energy, and that the radiation energy flooding the earth is the one and only energy on which
life depends.
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Right now (2011) we enter the age of massive solar energy harvesting via solar cells and wind or water power. The
necessary materials science and engineering for doing this on a large scale will provide work and jobs for many
years to come - but that will not concern us here.

Besides hot bodies we also have "cold" light sources like light emitting diodes (LEDs) and Lasers. We will come to
that later in more detail.
Most light sources and all hot bodies produce incoherent light (travelling in all directions with random phases) and
multi-chromatic light (having all kinds of frequencies), which is a far cry from the E = Ε0 · exp(ikr) fully coherent and
mono-chromatic plane wave that we like to use as mathematical representation. Sun light or artificial light sources used
for illumination thus generate extremely "messy" light from a purists viewpoint. The messy light is nevertheless quite
important in a general sense (imagine it missing!) but not of much technical interest - besides generating it.
Laser light, by contrast, is a good approximation to the plane wave model but not of much use for illuminating your
kitchen.

What we are interested in here is working with light. That means we have to consider manipulating it by running it
through or off materials. What comes to mind in this context are optical products and components. The table below
gives an incomplete list of a few catchwords that you should know in this context

Products and components around light technology

Components Products Field

Lenses (and apertures) Microscope, Glasses, Camera,
Film projector

Geometric
optics

Mirrors Reflector telescope; steppers,
optical MEMS

Prisms Binocular; Reflectors

Filters Color photography etc.

Diffraction gratings Spectrometer
⇓

Anti reflection coatings Solar cells, glasses, lenses

Linear polarizers Cameras, sun glasses, optical
measurements,  

Circular polarizers 3-D cinema, advaned
measurements

"Tensor"
Optics

Interference
Optics

Interference filters;
Interferometers Optical precision measurements

Phase shifters, High
resolution optics Lithography for Microelectronics

"Digital" optics Beamers, Displays, Cameras,
optical MEMS

Faraday, Kerr, Pockel, ...
effects

LCD display, ultrafast
modulation, advanced analytics

Optical fibers Optical communication, sensors

LED, OLED, Lasers High efficiency light sources,
Displays, Processing, .. ⇓

Non-linear materials Frequency doubling

Photonic crystals "Optical" semiconductors Quantum
OpticsQuantum dots Optical computing

The message is loud and clear. We have to move from simple geometric optics to "tensor" optics and interference
optics, arriving finally at quantum optics. We keep in mind, however, that there is only one kind of optics - those
catchwords do not describe different optic realities but just different approaches to one and the same thing.
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5.1.2 Basic Geometric Optics

The Very Basics of Geometric Optics

The essence of basic high-school geometric optics is shown in the following pictures:

Reflection and Refraction Focussing by an ideal convex lens

Optically transparent materials ("glass") have an index of refraction n > 1, and light hitting a transparent material
is reflected and refracted. Convex (or collecting or converging) lenses and concave (or dispersing or diverging)
lenses allow to manipulate the light path, e.g. by focusing a parallel beam of light as shown.
Let's clarify the terms at this point:

Reflection is, well, reflection; always with "angle in" = "angle
out".
Refraction is the sudden "bending" or "flexing" of light beams at
the interface between two different materials. The term belongs to
geometric optics. A light beam going through a lens is refracted.
Diffraction is the continous "bending" of light beams around
corners and all the other effects bringing about directional
changes and interference effects. A light beam going through an
optical grid is diffracted. The term belongs to wave optics.

The decisive material quantity in geometric optics (and beyond) is the index of refraction together with Snellius law.

What we know about Snellius law and some other basic optics parameters like the speed of propagation c inside
materials, frequency ν and wavelength λ in materials or in vacuum, is

sin α

sin β
 =  n Snellius law

   

n  = 
c0

c 

 = εr1/2  From Maxwell
equations

   

c  =  ν · λ Always valid

   

λmat  =  
1

n
 · λvac  From the equations

above

Knowing only the index of refraction n makes it already possible to construct light paths or light rays running through
optical devices like lenses or prisms.

Going a bit beyond that, we would also like to know the the optical dispersion, i.e. n = n(ν) so we can construct
light paths for the various frequencies (= colors) of visible light. Obviously, all we need to know for this is the
frequency dependence of the dielectric constant ε(ν), something we have treated extensively before.
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A nice thing in geometric optics is that the direction of the light paths is always reversible. Change the arrow directions
in the picture above (or in all other pictures like that) and they are still correct.

A not-so-nice thing might be that the definition of n = εr1/2 becomes troublesome if ε < 0, which, as we know, is
perfectly possible. Could there be an imaginary or even negative index of refraction? The answer is yes - as you
will see later.

If we go one step beyond simple geometric optics with ideal lenses, we realize that some modifications need to be
made:

Real lenses have all kinds of problems called lens errors or lens aberrations.1.
Some light is always reflected at interfaces between media with different indices of refraction.2.
The intensity of the light is always attenuated or damped whenever it passes through a material.3.
Focal "points" have finite dimensions in in the order of the wave length of the light.4.
All of the above may depend to some extent on the polarization of the light.5.

In going from point 1 to point 5 we move, of course, from geometric optics to wave optics.

Let's look very briefly on the first point. The major lens aberrations are:

Spherical aberration. Following Snellius' law, and tracing the light rays for spherical lenses, it becomes clear that
light rays running not close to the center of the lens are focussed to a point different from those close to the lens.
The effect is small if some aperture keeps the light rays close to the optic axis. The lens then has a small
numerical aperture NA.
The NA for a single lens is roughly the quotient of (possibly aperture defined) diameter / focal length; i.e. a crude
measure of the size of the lens; see the picture below. Of course, lenses with small NA will not suffer much from
spherical aberration but will also not transmit much light and thus produce "dark" pictures. The solution might be
aspherical lenses but usually combinations of spherical lenses are used.
Chromatic aberration. Different wavelengths or "colors" are not focussed on the same focal point because we
always have some dispersion and the index of refraction is a function of the wave length; n = n(λ). The "solution" is
the achromatic lens, always a combination of two lenses made from different glasses with n = n(λ) or dispersion
curves that compensate the effects of chromatic aberration to a sufficient extent.
Astigmatism occurs if the radius of curvature defining the surface of a lens is not exactly the same everywhere
(probably true for the lens in your eye). Instead of a focal point you get a smeared out longish spot. A similar effect
applies even to perfectly hemispherical lenses if the light rays coming in are inclined relative to the optical axis.
And so on. It is almost a miracle that we can see so well using a rather imperfect lens, and that sophisticated
optical apparatus like your binocular or camera objective is not only extremely good but also dirt cheap.

It is of considerable interest for Materials Science that the electromagnetic lenses used in electron microscopes have
pretty much the same "aberration" problems as optical lenses, causing all kinds of trouble. Unlike optical lenses,
however, there are usually no "easy" fixes except using small apertures, i.e. small NA values.

 

A few Examples
  

Note: If what follows doesn't bore you to tears, you have a problem!

  

Imaging through a convex lens. The lens has a focal length f; always a positive number. The Object O is
at a distance of O cm, the image I will occur at a distance I cm.

NA ≈
dAp

f

Focal length f

f =
r

2

r = radius
of
curvature

Imaging equation
1

O
 + 

1

P
 = 

1

f

That's what the geometric construction looks like. We call the picture "real" if it is on the other side of the lens as
seen from the object.
The focal length is the decisive number for the lens, next would be its numerical aperture (roughly given by its
lateral size). For convex lenses the focal length is a positive number, for concave lenses it is a negative number!
Instead of the focal length f one often gives values of dioptre D (or diopter), which is simply D = 1/f. My reading
glasses with 3 diopters thus have a focal length of 33 cm.
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From a materials point of view the dispersion properties of the (transparent) dielectric, i.e. n(ω) = [ε(ω)]½ in the optical
wavelength region is of supreme importance.

As we know, at optical frequencies dispersion is always determined by resonance phenomena linked to atomic
polarization. We also know, that ε, n → 1 for high frequencies, i.e. for ultraviolet (UV) and beyond. In fact, we don't
have a lot of good optical materials with high index of refraction in the visible region. Here are a few numbers.

Material Air Water
liquid

Water
Ice Benzene

Eye
lens
(human)

PMMA
(PC,
..)

Salt
(NaCl)

Crown
glass

Flint
glass Diamond TiO2 GaP Silicon

(Si) GaAs

n 1,00027 1,333 1,31 1.501 1,386 -
1,406 ≈ 1,57 1,50 1,5 -

1,54
1,6 -
1,62 2,419 2,496 3,5 3,96 3,93

Transparent in visible light
Only IR; not

transparent in
visible light

 Typically diamond is described as the "material" with the highest index of refraction. The semiconductors to the right of
it actually beat diamond fair and square - but of course only at frequencies where hν < Eg obtains (Eg is the band
gap). At higher frequencies semiconductors are perfectly opaque. Silicon thus is only a good optical material in the
infrared (IR) region of the spectrum.
So what is crown glass as opposed to flint glass? Or any of the umpteenth other varieties of glass? Look it up. As a
guide: crown glass is your basic run-of-the-mill "lime" glass (i.e. SiO2 with added Na, K and so on ); flint glass (also
known as lead glass) is what "crystal" (English for fancy goblets, tumblers, etc. for wine etc.) is made from; i.e. SiO2
with added lead oxide PbO.

Now let's image with a concave mirror of spherical shape. We can produce real or virtual images as shown.

Focal length f

f = r
r = radius
of
curvature

Imaging equation
1

O
 + 

1

P
 = 

1

r

That's what geometric constructions look like. If the image is on the other side of the mirror as seen from the object,
we call it "virtual" image.
Note that spherical mirrors have severe problems with spherical aberration. That's why you tend to use a parabolic
mirror where all light rays coming in parallel to the optical axis are deflected to the same focal point. However,
remember the first law of economics? There is no such thing as a free lunch! If the light comes in somewhat inclined
to the optical axis of a parabolic mirror, its imaging properties are actually worse than that of a spherical mirror.
That's why you always have a long tube on front of the mirror.
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5.1.3 Basic Wave Optics

Some Basics

Wave optics starts with Huygens (1629 - 1695) and Young (1773 - 1829); see the link for some details. Wave optics
proceeds in essentially two steps. First, the Huygens principle is applied, second interference between the resulting
waves is added.

Step 1: A wave hitting some edge or just about anything will produce a circular wave as shown below. The effect
is easily visible when looking at water waves on some relatively undisturbed water surface with obstacles.
(Plane) waves hitting an obstacle as shown below thus are detectable even in "shaded" places. Note that the
circular wave would go all the way around the edge; this is not shown for simplicity. The consequences are clear:
Even sharp edges appear always blurred if one looks closely enough. i.e. on a µm scale. This happens for any
plane wave, be it light, radio waves (allowing you to receive the rhythmic noise of your choice even in the "shade" of,
e.g., buildings), or electron waves (in electron microscopes). Just the lengths scales are different, going with the
basic wave lengths of the wave considered.

The blue lines show the maxima (or
minima; whatever you prefer) of the
amplitude of a traveling wave at some
point in time t0. The distance between
the lines is thus the wavelength λ
Somewhat later, the whole system of
lines would have moved somewhat to the
right (the propagation direction here).
The distance of one wavelength is
covered after a time tλ = λ/v; v is the
propagation speed. The time tλ is the
inverse frequency ν
Thus we have v = ν · λ = c for light.

The consequences are clear: The resolution dmin of a lens with the numerical aperture NA, i.e. its capability to
image two points at a distance dmin separately and not as some blur, is wave-length limited and given by

dmin  ≈ 
λ

2NA

It's easy to see in a "hand-waving" manner why the numerical aperture comes in. Imagine some lens and reduce its
numerical aperture by putting a real opaque aperture with a hole in front of it. The aperture edges will induce a blur
that get's worse the smaller the hole and therefore NA. Your resolution goes down with decreasing NA.
On the other hand, your lens aberrations become worse with increasing NA. The resulting conflict for optimized
optical apparatus is clear and encompasses a lot of intricate and very advanced topics in optics, e.g. how to make
structures on microelectronic chips with lateral dimensions around 30 nm < λ with optical lithography.

Now we consider step 2: two waves can interfere with one another. The principle as shown below is clear.

For a phase difference = 0 we have constructive interference; the amplitudes are doubled. For a phase
difference = 1800 = π  destructive interference "cancels" the wave; the amplitude is zero.
The apparent paradox of how you can get nothing from something (where are the two single waves and the energy
they carry now?) is not trivial to solve; for details see the link.

The paradigmatic experiment for showing interference effects is, of course, the double slit experiment. If you consider
that for electron waves, and in particular just for one electron (or photon), you are smack in the middle of quantum
theory.

In the wave picture the two spherical (or here cylindrical) waves emanating from the two slits interfere to give the
pattern shown below. There is no problem at all.
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In the photon picture, a photon (or electron) passing through the two slits interferes with itself. This boggles the
mind quite a bit but the result is the same: You get the interference pattern as shown, with pronounced minima and
maxima of the intensity, which now correspond to the probability of detecting the particle.

Whenever we look at non-trivial optics, we need to consider interference effects. In the real world (as opposed to the
ideal world shown in the pictures above), we need to consider the fact that our waves are almost never mono-chromatic
(all have the same wavelength) and coherent (all have the same phase) plane waves extending into infinity in every
direction.

The exception is, of course, the typical Laser beam, where we have an (almost) mono-chromatic and (almost)
coherent beam. However, a "Laser beam" is typically "thin" and doesn't extend in all directions. So it is not a simple
plane wave!

A first important conclusion can be arrived at.

If we look at an ensemble of waves with the same wavelength, or better: with the same wave vector k = 2π/λ since
it contains in addition to the wavelength also the direction of propagation (that's why it's a vector), we note that:

An ensemble of sufficiently many waves with the same ±k
and random phases interferes to exactly zero (plus some noise)

"Random phases" means that all phases are equally probable. The proof of the theorem is easy: If one of the many
waves has a phase α, there will be some other wave with the phase –α - the two will cancel. A visual proof
constructed in a different context (that should be familiar) but fits just as well here is shown in the link.

From this you realize immediately that inside some hollow tube of length L that reflects waves at either end, only waves
with λ = 2L/m; m = 1, 2, 3,... can exist.

Waves not meeting this criterion will, upon reflection at the end of the tube, produce a phase-shifted wave with some
new phase, twice this phase upon the second reflection and so on. Pretty soon you have waves with random
phases in there and—see above.
What that also means is: We now have also all musical instruments covered, in fact everything where the term
"resonator" comes up. This includes also the free electron gas and to some extent electrons in a periodic potential
as well as the Bragg condition for diffraction of waves at crystals. The list goes on. Quantum theory deals with wave
functions ψ after all, and the big difference to classical physics comes from the simple fact that you let your wave
functions interfere before you take the square, producing in terms of probabilities the classical equivalent of a
particle.

  

Standing Waves
  

If we look at simple waves propagating in just one direction, i.e. at a one-dimensional problem like sound waves inside
an organ pipe, we quickly get the concept of a standing wave, the superposition of two plane waves with everything
equal except the sign of the wave vector k.

First let's look at the pictures and relations below; they are only meant to refresh your memory
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"Running" Plane Wave Standing Wave

E(r,t)  = E0 · exp{i(kr – ωt)}
  
Re E  = E0 · cos{2π/λ – ωt}

E(r,t)  = E0 · exp{i(kr –ωt)} ± E0 · exp–{i(kr –ωt)}
  
Re E  = 2E0 · cos(2π/λ) · cos(ωt)

  
λ  = 2L/m; m = 1, 2, 3,..; (a "quantum" number)
L  =  resonator length

 
The pictures and equations are true for acoustic waves, light waves or electron "waves" - just for any wave. You should
know standing waves from acoustics - it's the base of any musical instrument, after all, and you hear them all the time.

How about standing light waves? You ever seen some?

No? So put two mirrors at some distance L in the cm range and admit some light. Are you now going to see a
standing light wave between the mirrors, as you should expect from all of the above? No you don't - for several
reasons:

The coherence length lcoh  of normal light is too short. Normal light is not a infinitely extended plane wave
but has some finite "length" that is far below cm. You're essentially missing the extended waves between the
mirrors that are superimposed and thus you can't have a standing wave. Organ pipes that are 500 m long
don't work either.

1.

Fine, so let's use coherent light, however made. OK - you will get standing waves now but you won't notice.
The minimal difference in wavelength between two allowed standing waves is ∆λ = [2L/m – 2L/(m + 1); for
large m this simplifies to ∆λ ≈ 2L/m2. Since λ is in the µm region, and L in the cm region, m is around
10.000 and ∆λ ≈ 10–4 λ. In other words, the allowed wavelengths of the standing waves are so close to each
other that pretty much all light wavelengths can live inside your resonator. You won't notice a difference to an
arbitrary spectrum. Our lecture room here, even so it is a resonator for acoustic waves in principle, doesn't
appear to produce nice musical tones because it is simply too large for acoustic wave lengths.

2.

OK, so let's make a resonator - two mirrors once more - but only separated by a distance of a few µm. Now
you did it. You could have distinct standing light waves in there. But what do you expect to see now? Think!

3.

Why do you hear the standing acoustic waves in an organ pipe or in any (classical) musical instrument? Because
some of the wave leaks out, eventually hitting your ear. The tone (= pressure amplitude inside the pipe) then would
soon be gone if one wouldn't keep feeding acoustic waves into the resonator (by blowing into the organ pipe, for
example). Same here. Some light must leak out so you can see it. If the leaking (and the feeding light into the
resonator) is done in a certain way, we call the resulting instrument a Laser. We'll get back to this.

The long and short is: Yes, interference effects and standing waves are of supreme importance for modern optics and
you should refresh you memory about the basics of that if necessary.

The following picture shows standing light waves very graphically. We are looking at the unexposed section of a
photo resist from microelectronics. The part that was exposed to light has been etched off. The ripples on the left-
over resist (= light sensitive polymer) correspond to the extrema of the amplitude of a standing light wave.

The principle of what is happening.
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The surface of the resist and the surface of the substrate were rather flat and only a few wavelengths apart. When
light (monochromatic and rather coherent) was fed to the system, a standing wave developed inside the resist.
While you wouldn't have seen anything special, the light intensity "seen" by the resist varied periodically with depth,
and that's why the light-induced chemical changes that allow to etch out the exposed part, leave "ripples" on the
side walls.
If this is all gobbledegook to you, you need to look up "lithography" within the context of semiconductor
technologies.

Questionaire
Multiple Choice questions to 5.1.1 -

5.1.3
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5.1.4 Energy Flow, Poynting Vector and Polarization

Energy Flow and Poynting Vector

Light as a wave, by definition, is polarized since an arbitrary light wave can always be decomposed into plane waves
described by the electrical field vector E(r,t)=E0exp{i(kr –ωt)} and the corresponding expression for the magnetic field.

The electrical field vector (or the electrical displacement vector D in material) thus is contained in some plane (the
polarization plane) that contains the direction of propagation (direction of k-vector). Looking for example at a
picture we had before but now augmented with the relevant vector quantities, we see that in this case:

Polarization plane=(y,x) plane.
Propagation direction=k direction=Poynting vector S direction=x direction here.
E-field amplitude in y-direction given by E0.
H-field amplitude in z-direction given by H0.

Ey(t)  = Ey0 · exp{i(kx – ωt)}
Hz(t)  = Hz0 · exp{i(kx – ωt)}

This all looks well-known and clear. Usually we don't bother to go much deeper at this point. In a Master study course,
however, you now ponder the picture and the equations above for a while. Then a few questions should come up, for
example:

Can polarization be described by a vector? Could I just use a unit vector in E0-direction?
What happens if E0; H0 are not parallel to D0; B0, something to be expected in anisotropic materials?
How do I describe polarization in the particle picture?
Is the electrical and magnetic field really in phase as shown above?
How large, in V/cm, is the electrical field E0 in a typical light wave. How large (roughly) is it for one photon of
a given energy?
Let's assume you know the electrical field E0: how large is the magnetic field H0 associated with it?
The energy a photon brings along is EPh=hν. How is this light energy transported by an electromagnetic
wave?

It's not very difficult to conceive and to understand these questions. How about the answers?
The bad news is: There are no easy answers for some of those questions.

The good news is: For most of what follows you don't have to worry about the answers. I will go into details later
whenever necessary. For now you can use this link to get some ideas about the answers and, even better, you
could do the simple but illuminating exercise below.

Let's start with the last question. Light flow equals energy flow. All of us who once experienced a sun burn (or shot down
one of those evil alien space ships with a Laser gun) know that. How does light energy "flow" exactly?

Well, we (should) know how much energy density W =energy /cm3 is contained in an electric or magnetic field in
vacuum (in materials use D and B instead of E and H): We have:

Welect  = 
ε0 · E2

2 
Wmag  = 

μ0 · H2

2 

[Welect; magn]  = [Ws m–3]
 

We do not yet know, how E and H are linked. All we need to know is that this follows "straight" from the Maxwell
equations and is given by

E0  = 




μrμ0

εrε0





½ 
· H0  = Zw· H0 
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We defined a new quantity Zw=E0/H0=(μ0μr/ε0εr)½ that is called the wave impedance  of the medium. This is an
apt name since Zw does have the dimension "Ohm" (Ω) as required for an impedance.
For the vacuum impedance (εr, μr=1) we get

Zw(Vacuum)=376,7 Ω

This is a bit strange if you think about it. We just connected vacuum, the nothing, with a defined property that can
be expressed in a simple number! You can buy a resistor with 377 Ω and wonder why it somehow reflects a
property of vacuum.

Be that as it may, we now define a new vector S as follows:

S  = E × H
   
  = Poynting vector

The Poynting vector has interesting properties:

S points in the direction of the propagation of the light, i.e. in wavevector k direction as shown in the figure
above.
|S|=S=E0 · H0 · cos2(kr - ωt), the magnitude of the Poynting vector, gives directly the power flux in W/cm2

of an electromagnetic wave
The average power delivered to an area is thus .

<S>  = 
E0H0

2
 = 

E02

Zw

 =  E02 ·




εrε0

μrμ0





½

          
<S>  ∝ E02 · εr½  ∝ E02 · n      

Don't mix up the power flux in W/cm2 with the specific energy measured in in Ws/cm3or J/cm3 that is contained
in fields as shown above! It's time for an exercise to get some ideas about the numbers associated with light power
and field strength!

Exercise 5.1.2
Energy, field strength and photons

We still have a bunch of open questions from above but before we tackle those we have to learn a bit about polarization.

   

Polarization of Light
  

It is clear that an idealized plane wave, given essentially by the exp[i(kr – ωt)] term, describes a monochromatic and
fully coherent light wave propagating in exactly one direction that is also linearly polarized by definition.

Some Laser beams may come close to emitting a plane wave matching that description but laser light is a far cry
from "normal" light.
Most real or normal light beams, e.g. the light "beams" emanating from light bulbs, are not polarized as we know.
"Real" light from light bulb looks - very schematically - as shown below. We are forced to assume that the
electromagnetic wave has a beginning in space and time (at the light bulb, like now) and an end. The length of the
whole thing we call "coherence length". The color (=wavelength), and the polarization plane for one of those waves
with a beginning and an end, has some fixed value but that is different from the next wave coming along. The
distribution of wavelengths we call the spectrum of the light source, and the distribution of polarization planes will be
random. Each ones of theses "wavelets" is caused by an electron changing its state from higher to lower energy.
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The picture might be interpreted as photons coming out of the light bulb. If one of those wavelets would be seen as a
completely abstract symbol for a photon, this would be true. However. photons are not just short pieces of an
electromagnetic wave, so one must not interpret this figure as a picture of photons.

We have a number of new questions to consider (never mind that we did not answer all the old ones yet):

How do we detect if and in which direction a light
beam is polarized?

1.

How can we polarize an unpolarized light beam if
the need arises?

2.

Does is matter if and how a light beam is polarized
for the applications we have in mind?

3.

If it matters: how do we optimize the needed
polarization?

4.

How does the polarization of a wave relate to
photon properties?

5.

Are there other polarization modes besides linear
polarization?

6.

 

We are now at the point where serious
optics starts.

It ain't exactly easy but we will only
scratch the surface here.

Let's look at these questions one by one. We will encounter rather difficult topics that we only treat in a perfunctory
way here. Some topics will come up later again.

 
1. How do we detect if and how a light beam is polarized?

By using a polarizer, i.e. some material that transmits only that E-field component of an incoming light beam that
is parallel to some material specific polarization direction as shown below.

From Rogilbert; French Wikipedia

Turn your polarizer and the light intensity coming out stays either constant if the incoming beam is not polarized at
all (but is always lower in intensity) or varies between zero and maximum (=incoming) intensity in a cos2 fashion if
the incoming beam is 100 % linearly polarized, as shown above. If the beam is partially polarized you have a mix of
the two extremes.

The second question (2. How can we polarize an unpolarized light beam if the need arises?) is answered too:
Use a polarizer! Of course we have a new question now, the really tough one.

7. What, exactly, gives a material polarizing properties?
And how can I manipulate or engineer those properties? That's indeed a tough question as we shall see in one of
the next sub chapters. Before we try to answer this one, we look at a few simple things first.
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What we perceive now is that a standard non-polarized light beam simply consists of many intrinsically polarized
beams but with randomly distributed polarization directions. The total polarization effect then is zero.

     
This is easy to perceive with the help of the figure on the left.

Randomly distributed polarization vectors sum up to zero=no
polarization.

 Note that we now indirectly answered one of the earlier questions from
above: Yes, you can use a polarization vector like we do in this case
and most others. But beware! Polarization in general is more tricky than
you might think and a simple vector is not always enough to describe it
mathematically. (Remember the problems encountered in using a polar
vector for describing rotations?). You will need a matrix if you go about it
systematically.

 The picture also makes clear why the polarized beam emerging from a
polarizer has a lower intensity than the incoming beam, and also how
much lower it will be.

 If we want to make life easier we can replace a large number of beams
with random polarization directions (red vectors) by just two beams at
right angles (brown vectors).

 It is time for a quick exercise:

 

Exercise 5.1.3
Polarization

  
3. Does is matter if and how a light beam is polarized for the applications we have in mind?

The answer is simple: No, it does not matter for many simple or standard applications. Your glasses, binoculars,
microscopes, and so on, work perfectly well with "normal" light. With a polarization filter your camera will make
somewhat better pictures in certain circumstances but that is usually not decisive.
However, for anything a bit more sophisticated, like all the optical things that a Material Scientist and Engineer
needs for her or his work or develops for others, it will matter very much as we will see. Here is a table that should
give you some idea:

Application Polarization
matters a lot

Polarization
doesn't matter much

Simple optical instruments
(Cameras, binoculars, ...)  Forget it

Better optical instruments
(Cameras, .. you use a "Pol filter"  

Optical communications not yet but soon most cases now

Optical measurements most depend on
polarization

 

3-dim movies including circular
polarization

 

Laser in many cases some cases

LCD displays impossible without
polarization

 

4. If it matters: how do we optimize the needed polarization?

The answer is simple again: by constantly coming up with new or improved materials. Note the extremely simple
and important truth:
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If a light beam does not interact with some material,
its properties will not change.

5. How does the polarization of a wave relate to photon properties?

Well - the photon has a spin of 1/2! Naively put, there is a kind of (polar) vector associated with it. So there might be
a relation between polarization and spin?
Yes - up to a point. But it's not that simple! Whatever the case may be, my advice is: forget it! Whenever
polarization comes up, only think in the wave picture. Otherwise you simply run into all kinds of unnecessary
problems. However, it is perfectly possible to describe all the effects of polarization in the particle picture, too. There
is no contradiction.

We have the last questions to consider and that will open a large can of worms, as the saying goes. Let's start with No.
6: Are there other polarization modes besides linear polarization?

Yes there are. They are called circular and elliptical polarization. Here we go:

 

Other Modes of Polarization
  

Some idealized plane wave travelling in z direction with the electrical field vector pointing in x-direction writes as
Ex(z,t)=E0, xexp{i(kz –ωt) for the the electric field part. This idealized light wave is a solution of the Maxwell equations
for some (idealized) conditions.
Ey(z,t)=E0, yexp{i(kz –ωt + π/2); i.e. the same wave but with the electrical field pointing in y-direction and a phase
difference of π/2 (or any other you care to insert) is also a solution, of course.
If those waves travel inside a material, all we have to do is to replace the electrical field E by D, the dielectric
displacement (and H by B, of course), and to take care of the change in wavelength or the magnitude of k, respectively.

If the material is isotropic and linear, we have D=ε0εrE. That means that not only the two waves from above are still
a solution of the Maxwell equations for the case considered, so is any superposition of those (and possibly other)
solutions. So whatever we are about to discuss works just as well in "simple" materials. Most optical materials are
amorphous (called "glass"), and meet the requirement isotropic and linear in a fair approximation so we don't have to
worry yet.
However, many crystalline materials are neither isotropic nor linear - and then we will be in trouble. Those materials
are of course very interesting to a Materials Scientist but the theory of what happens is difficult and we will deal with
that later.

Now let's add up the two E (or D) solutions from above and see what we get.

Ex(z,t) + Ey(z,t)  = E0, xexp{i(kz –ωt)   +  E0, yexp{i(kz –ωt+ π/2)

The real part of this complex equation gives the electrical field vector, we have

E  = E0, x · cos(kz –ωt) + E0, y · sin(kz –ωt)

The full electrical field E thus is obtained by adding two vectors at right angles with magnitudes that change
sinusoidally between (±E0). The total effect is a vector with length E0 that rotates with a circle frequency ω around
the z-axis.
What you get is called circular polarization for obvious reasons; it looks like shown below. Note that all of this
appears to be far more complicated than it actually is, this is made clear by the animation below which shows the
basic simplicity of what is going on.

(From wikipedia)
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You realize, if you think about it, that we just opened the promised rather large can of worms. We started with simple,
intuitively clear linear polarization and now progressed to circular polarization by superimposing two special linearly
polarized waves. Of course, we can produce two basic kinds of circular polarization: left-handed and right-handed
circular polarized light this way. Equally of course, we can now superimpose all kinds of waves with all kinds of phases.
Where will it end?

Actually, it's not as bad as it might be. Superimposing whatever you like just gives you elliptically polarized light
(plus, perhaps, a background of unpolarized light).
The extremes of an ellipse are straight lines (linearly polarized light, just superimpose the two waves without a
phase difference) and the circle (phase difference π/2; equal amplitudes).

We will stop at this point. Far more important than going into intricate details of all this polarization stuff is to consider:

Question 2 from above, not yet addressed: How do we make all these kinds of polarization? (Answer: with
special materials, of course).
What is it good for? Who needs circular or elliptically polarized light? (Answer: you - if you watch, e.g., 3D-
movies)

We will look very briefly at some answers in the next chapter, where we deal with light and materials.

  
Questionaire

Multiple Choice questions to 5.1.4
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5.1.5 Summary to: 5.1 Optics

Know your numbers and relations for visible light!
For the propagation of light:
use the wave model
For the generation and
disappearance (= absorption) of
light:
use the photon model

Snellius law:
n = sinα/sinβ with α, β the angle of
incidence
or propagation, resp.

Wavelengths: λ ≈ 400 nm - 800 nm.

λmat = λ0/n.  

Frequency: ν≈ 10 15 Hz.  

Index of refraction: n = εr½ ≈ 1,5 - 2,5  

Energy E ≈ 1,8 eV - 3,2 eV.  

Dispersion relation: c0 = ν λ 0 = 3 · 108 m/s
cMat = ν λ 0/n(λ)

 

     
Know yout basic equations and terminology  

Coherent monochromatic plane wave
E and H perpendicular and in phase

    
  

E(r,t)  
H(r,t) 

 =  E0
 H0

    · exp{i(kr –ωt)}

 

    
Reflection always with "angle in" = "angle out".  

Refraction is the sudden "bending" or "flexing" of light beams
at the interface

 

Diffraction is the continous "bending" of light beams around
corners; interference effects.

 

    

Geometric optics
Key paramters

Focal length f and
numerical aperture NA of lenses, mirrors.
Image formation by simple geometric constration  

Various aberrations (spherical. chromatic, astigmatism, coma,
...) limit performance.

 

 
Wave optics
Huygens principle: and interference

 

 

Ultimate limit to resolution  

   
  

dmin  ≈ 
λ

2NA

 

    
Know your basic types of waves:  

(Running, coherent, monochromatic) plane wave.  

Standing waves = superposition of plane waves.  

Incoherent, multichromatic real waves  
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Relation s between electrical field E, magnetic field H and
Poynting vector (energy flow vector) S = E × H

Welect  = 
ε0 · E2

2 
Wmag  = 

μ0 · H2

2 

[Welect; magn]  = [Ws m–3]

E0  = 




μrμ0

εrε0





½ 
· H0  = Zw · H0 

 

<S>  = 
E0H0

2
 = 

E02

Zw

 

    
This equation links energy flow (easy in photon picture) to
field strength in wave picture.

 

Zw = wave impedance of the medium.
Zw(vacuum) = 376,7 Ω

 

     
Polarization = key to "advanced" optics.
Simple case: linear polarization.

 

Plane of polarization contains E-vector and S (k) vector.  

Any (coherent) wave is polarized but net polarization of
many waves with random polarization is zero!

 

Light intensity (∝ E2) between polarizers at angle α scales
with (cosα)2.

 

General case: elliptical polarization; important are the two
extremes: linear and circular polarization.

 

For circular polarizaiton the E-vector rotates on a circle
while moving "forward". This results from a superposition of
two plane waves with E-vectors ar right angles and a phase
difference of π/2.

 

Technically important (3-dim Cinema; Lab optics)  

Questionaire
Multiple Choice questions to all of 5.1
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5.2 Optics and Materials

5.2.1 Interaction between Light and Matter

The Task

We have a (monochromatic, coherent, polarized) light beam (a plane wave in other words) and a piece of material. We
direct our idealized "perfect" beam on the material and ask ourselves: what is going to happen?

First we have to discuss the properties of the material a bit more. It might be:

Optically fully transparent for all visible wavelength (like diamond or glass ) or optically opaque (like
metals).
Optically partially transparent only for parts of the visible wavelength (like GaP or all semiconductors with
bandgaps in the visible energy range) or colored glass.
Opaque and black (= fully absorbing) like soot or highly reflective (like a mirror).
Perfectly flat (like a polished Si wafer) or rough (like paper).
Uniform / homogeneous (like glass or water) or non-uniform (like milk: fat droplets in water).
Isotropic (like glass) or anisotropic (like all non-cubic crystals).
Large (like anyything you can see) or small (like the Au nanoparticles in old church window that produce the
red color).

I'm not sure I have exhausted the list. Be glad now that for the time being we look at a simple and "perfect" light
beam and not at real light.falling on a real material.
So we have a tall task before us. We first make it a bit easier by considering only flat, uniform, isotropic and
transparent materials like glass or (transparent) cubic single crystals like diamond.

All that can happen for these rather ideal conditions is shown in the following picture:

In essence we have an incoming beam, a reflected beam and a diffracted beam that "goes" into the material.

The incident "perfect" beam must have some kind of polarization. Even if it is unpolarized we should from now on
think of it as consisting of two linearly polarized parallel beams with equal intensity and polarization directions
differing by 90o. Same thing for the two other beams. Consider them to be two beams with a 90o difference in
polarization direction. This is important!
We must expect that the reflected and diffracted or transmitted beams might be polarized, too, but we must not
assume that their polarization is the same as that of the incoming beams. We deal with that in the next sub
chapter.
The situation in the picture above is very slightly simplified because we don't consider so-called "evanescent
waves" at the interface, and we only discuss a linear system - the frequency of the light doesn't change. There are
no beams with doubled frequency, for example (can happen in some crystals).

What do we know about the three (times two) light beams shown?
I'll drop the plural from now on. But remember: think of all beams as consisting of two linearly polarized parallel beams
with equal intensity and polarization directions differing by 90o.
Incoming beam. We know all about the incident beam because we "make" it. In the simplest case it's a plane wave
with an electrical field given by E = E0expi(kin · r  – ωt) or, if you prefer, E = E0cos(kin · r  – ωt). The basic parameters
of the incident beam are:

Intensity: We can describe the intensity Iin by looking at E02, the square of the electrical field strength
amplitude. In the particle picture it would be the number of photons per second. In regular or technical optics,
we have special units, "invented" for dealing with light but we will not cover that here.
Frequency: We assume monochromatic light with the circle frequency ω.
Polarization: We assume some arbitrary constant polarization (= direction of the E vector). By definition,

Advanced Materials B, part 1 - script - Page 190



the polarization direction is perpendicular to the direction of the wave vector k. We have only one beam now
(the intensity of the second one is zero).
Phase: We can pick any initial phase since it's numerical value depends on the (arbitrary) zero point of the
coordinate system chosen.
Note that by just picking a direction (like this — ), you have not yet decided where the tip of the vector is (—>
or <—), so we must pick that too. Switching to the other direction then implies a phase change of 1800 or π
or reversing the sign of E.
Coherence: We always assume full coherence, i.e. there is only one phase. An incoherent beam, for
comparison, would be a mixture of beams like "our" beam but with different (= random) phases.

Since we assume a linear system, we can always discuss "colored" light by discussing each frequency separately.
We also can deal with arbitrary polarizations by decomposing it into the two basic polarizations considered below
which we need to discuss separately. An arbitrary polarization then is just a superposition of the two basic cases;
we are back to our "two beam" picture from above.

Reflected beam:. The reflected beam will essentially be identical to the incoming beam except for

Intensity: The intensity Iref will be different from that of the incoming beam; we have 0 < Ire < Iin.
Direction: We know that we have a mirror situation i.e. αout = αin. Note that its actually αout = 360o –αin if
you measure the angles in one coordinate system. Why we know that we have a mirror situation is actually a
tricky question!
Phase: We might have to consider that the phase of the reflected beam changes at the surface of the
material.

Refracted beam: The refracted or transmitted beam runs through the material. We know that there is always some
attenuation, damping, extinction or what ever you like to call it. I will call it attenuation. What do we have to consider?

Intensity: We know from energy conservation that Itr(z = 0) = Iin – Ire.
Attenuation: We expect exponential attenuation according to Itr(z) = Itr(z = 0) · exp–z/αab if we put the z-
direction in the direction of the transmitted beam for simplicity. The quantity αab obviously is an absorption
length, giving directly the distance after which the intensity decreased to 1/e or to about 1/3.
Direction: Snellius law applies, i.e. sinα/sinβ = n. We also know that the index of refraction n is given by
εr, the "dielectric constant"; we have n = (εr)½.
Phase: We might have to consider that the phase of the transmitted beam changes at the interface of the
material.

While we seem to know a lot already, some tough questions remain, essentially relating to intensities, phases and
attenuation as a function of the polarization, the angle of incidence, and the properties of the material.

As it will turn out, dealing with attenuation is easy. All we have to do is to remember that we replaced the simple
"dielectric constant" εr some time ago by a complex dielectric function ε(ω) = ε'(ω) + ε''(ω). Since the index of
refraction is simply given by the square root of the dielectric constant, we might expect that the dielectric function
not only contains the index of refraction but additional information concerning attenuation. We will look at that in
sub-chapter 5.2.3 in more detail.
The questions relating to intensities and phases will not go away that easily, however. We will see how to find
answers in the next sub-chapter.

  

Finding the Answers
  

How to we have to proceed in order to find answers to the questions raised above? In other words, how can we derive the
so-called Fresnel equations that contain the answers?

First we need to look a bit more closely at the polarization. Remembering our old convention is helpful:

Polarization (if not otherwise stated) is always
taken in the E-field direction.

As long as we only deal with linear polarization, meaning that the polarization direction is always the same (i.e. not a
function of time), we can describe any wave with some or none polarization by a superposition of the two waves
discussed above with two orthogonal polarization directions.

We now need to define one of the two polarizations directions. The other one then follows automatically. We use the
following convention like everybody else:
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TE polarization:
("Transversal electric") 

TM polarization:
("Transversal magnetic") 

E lies perpendicular to the (blue) plane of incidence
defined by the normal vector n of the material surface
considered and the wave vector kin of the incoming
wave.
E thus lies in the surface of the material. Also
described as _|_ (perpendicular) case because the E-
vector is perpendicular to the "plane of incidence".
The magnetic field vector H then lies in the "plane of
incidence".

E lies in the (yellow) plane of incidence defined by
the normal vector n of the material surface
considered and the wave vector kin of the incoming
wave.
E then has no components in the material surface.
Also described as || (parallel) case because the E-
vector is in the "plane of incidence".
The magnetic field vector H then lies in in the surface
of the material.

Once more: Arbitrary (linear) polarizations can always be described by a suitable superposition of these two basic
case.

Energy conservation gives us a simple and obvious relation for the energies or intensities flowing along with the waves:

Itr(z = 0)  =  Iin – Ire

Note in this context that the energy of a electromagnetic wave with electrical field amplitude E0 traveling in a
medium with dielectric constant ε is proportional to ε½(E0)2 as we have figured out before. Note also that the
transmitted beam might be attenuated so its energy is eventually transferred to the medium it's traveling in.

Going beyond that, however, needs some work. We must, in essence, start with the Maxwell equations, look at the
"electromagnetic wave" case and solve them for the proper boundary conditions at the boundary of the two media.

Or do we? Actually, we don't have to - as long as we remember (or accept) that there are simple boundary
conditions for all the fields coming up in electromagnetism as illustrated below:

Electrical field E   Etang = const
   
Dielectric displacement
D = ε0εrE

  Dnorm = const.

 
Magnetic field H  Htang = const
   
Magnetic induction
B = μ0μrE

 Bnorm = const

The picture shows some interface between two (dielectric) materials. In the picture the first one is something like air or
vacuum (εr ≈ 1) but the relations holds for all possible combinations. How do we derive the boundary conditions?

It's easy. For an electrical field you need a gradient in some charges. For a change of an electrical field vector you
need an additional charge gradient right at the place where the field vector is supposed to change. In the above
case, for a change on the tangential component you would need a lateral gradient in the charge distribution on the
surface.
If you understood chapter 3, you know that some surface charge with an area charge density σ is generated by
polarization. Looking long enough at Gauss' law will show that a lateral charge gradient cannot exits. The tangential
components Etang of E therefore must not change going across the boundary. The normal component, in contrast,
must change because we do have an addition charge gradient perpendicular to the surface.
Using related arguments makes clear that for the dielectric displacement D the normal component must remain
constant. For the magnetic field H and the magnetic flux density or induction B corresponding relations apply. You
might reason that this provides the definition of D and B. It's just extremely useful to have vectors meeting those
boundary conditions.

Fortified with these boundary conditions, valid for any fields including the rapidly oscillating electric and magnetic fields
of light, the derivation of the Fresnel equations - that's what we are after - is not too difficult as we will see in the next
sub-chapter.
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Questionnaire

Multiple Choice questions to 5.2.1
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5.2.2 Fresnel Equations

Deriving the Fresnel Equations

Let's look at the TE mode (or _|_ mode) once more but now with the coordinate system needed for the equations
coming up.

The electrical field of the incoming beam thus writes as Ein = (0, Ein, 0), i.e. there is only an oscillating component
in y-direction. For the y-component Ein we can write Ein = Ein, 0exp[–i(kinzcosα + kinxsinα)], decomposing the
wave in an z and x component. We omitted the ωt phase factor because it will drop out anyway as soon as we go
to intensities.
Next we should write the corresponding equations for the reflected wave and the transmitted wave (requiring
changes in the k-vector).
Then we need the same set of equations for the magnetic field. For that we have to know how the magnetic field of
an electromagnetic wave can be derived from its electrical field. That means back to the Maxwell equations once
more or for a taste of that to sub-chapter 5.1.4.
After you did that you consider the boundary conditions as outlined before. Now you can start to derive the Fresnel
equations. You, not me. It's tedious but good exercise. Let's just look at the general way to proceed.

First we write down the continuity of the tangential or here parallel component of E (and always same thing for H in
principle). Since E has only components in y-directions we have for those components

Ein + Eref  =  Etr

While this looks a bit like the energy or intensity conservation equation from before, it is not! It is completely
different, in fact! Our E's here are field strengths and not energy!

So let's look at the energy flux in z-direction now, as given by the Poynting vector S. It must be continuous since energy
is neither genererated nor taken out at the interface as noted before. With the relation for energy from before and
dropping the index "0" for easier writing and reading, we obtain

ε1½ [(Ein)2 – (Eref )2] · cosα  =  ε2½ (Etr)2 · cosβ

This equation is simply the good old Snellius law in slight disguise (figure it out yourself, noting that Itr = Iin – Iref).

Dividing that equation by the one above it (remember: (Ein)2 – (Eref )2 = (Ein – Eref ) · (Ein + Eref ) gives

ε1½ [Ein – Eref ] · cosα  =  ε2½Etr · cosβ

With the good old relation (ε1/ε2)½ = n1/n2 = sinα/sinβ (with α and β as given in the old figure for simplicity) and
some shuffling of terms we finally obtain the Fresnel equations for the TE case .

Fresnel Equations TE case

Eref  =  Ein ·
sinβcosα – sinαcosβ

sinβcosα + sinαcosβ
 =  – Ein ·

sin(α – β)

sin(α + β)
       

Etr  =  Ein ·
2sinβcosα

sin(α + β)  
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Going through the whole thing for the TM case (something I will not do here) gives the Fresnel equations for the TM
case

Fresnel equations TM case

Eref  =  Ein ·
sinβcosβ – sinαcosα

sinβcosβ + sinαcosα
 =  – Ein ·

tan(α – β)

tan(α + β)
       

Etr  =  Ein ·
2sinβcosα

sin(α + β) · cos(α – β) 
   

Relatively simple equations - but with a lot of power! Before we look at these equations a bit more closely, we modify
them by dividing everything by Ein, so we get relative numbers (in % if you like) for the field strength or the relative
intensities (E/Ein)2.

The resulting numbers for the relative field strengths we call the Fresnel coefficients. We have four Fresnel
coefficients: one each for reflection or transmittance, and that always separately for the TE and TM case.
 

Using the Fresnel Equations

A first extremely easy thing to do is to calculate the Fresnel coefficients for normal incidence (α = 0o). What we get for
the standard case of going from air (less dense medium, n = 1 to some appreciable n (denser medium) for both the TE
and TM case is

Eref

Ein

  =  – 
n – 1

n + 1
    

Iref

Iin

 
 =  





n – 1

n + 1





2

In other words, shining light straight on some glass with n = 2 means that almost 10 % of the intensity will be
reflected! This has immediate and dire consequences for optical instruments: you must provide some "anti-
reflection" coating - otherwise your intensity gets too low after the light passed through a few lenses..

We need to do a bit of exercise here:

Exercise 5.2.1
Fresnel coefficients

If we now speculate a little and consider metals as a material with very large dielectric constants and thus n, it is
clear that they will reflect almost 100 %.

Next we plot the Fresnel coefficients as a function of α, the angle of incidence. We need four figures with 8 graphs to
get the major points clear:

  Two figures showing the relative field strength (Eref/Ein), always with two separate graphs for the two basic
cases TE and TM.
1. Case 1: n1 > n2, i.e. going from the less dense to the optically denser material
2. Case 2: n1 < n2, i.e. going from the optically denser to the less dense material
Two figures showing the relative intensity  (Eref/Ein)2, always with separate graphs for the two basic cases
TE and TM; same cases as above

First we look at case 1 with n1 < n2, i.e. going from the less dense to the optically denser material

We take n1/n2 = ½ e.g. going from air with n = 1 into some glass with n = 2.

Here are the 4 graphs for this case; we look at the reflected beam.
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Case 1: Going from an optically less dense (n = 1) into a dense (n = 2) material

Electrical Field
E/E0

Reflected beam Intensity
(E/E0)2

Let's look at the field strength first What we see is

The numbers are negative for small α or almost perpendicular incidence. This means that we have a phase
shift of 180o between the incident and the reflected wave as outlined before.

1.

The relative amplitude of the transmitted beam is simply 1 - Eref/Ein. It becomes small for large α's.2.
In the TM case the field strength is exactly zero at a certain angle αB or "Brewster angle". This means that
there is no reflection for this polarization; all the light will be transmitted.

3.

So if the incident light consists of waves with arbitrary polarization, the component in TM direction will not be
reflected and that means that whatever will be reflected must be polarized in TE direction. We have a way to
polarize light!.

4.

For grazing incidence or large α's almost all of the light will be reflected in either case.5.
Looking a the intensities does not show anything new; you just see the "strength" of the reflected beam more clearly.

  
Now let's look at case 2 with n1 > n2, i.e. going from the more dense to the optically less dense material

We take n1/n2 = 2 e.g. going from some glass with n = 2 into air with n = 1.

Here are the 4 graphs for this case.

Case 2: Going from an optically dense (n = 2) into a less dense (n = 1) material

Electrical Field
E/E0

Reflected Beam Intensity
(E/E0)2

Let's look at the field strength first What we see is

The numbers are positive for small α or almost perpendicular incidence. This means that we have no phase
shift of 180o between the incident and the reflected wave as outlined before. Not that the reflected wave is the
one staying inside the optically dense material.

1.

The relative amplitude of the wave leaving the material is simply 1 - E/E0. It goes to zero rather quickly for
increasing α's

2.

In the TM case the field strength is exactly zero at a certain angle αB or "Brewster angle". This means that
there is no reflection for this polarization, all the light will be transmitted. Note that the value for the Brewster
angle here is different from the one in the case going from the less dense to the more dense material.

3.

So if the incident light consists of waves with arbitrary polarization, the component in TM direction will not be
reflected and that means that whatever will be reflected must be polarized in TE direction. We have a way to

4.
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polarize light inside a material!

4.

At some critical angle αcrit all light in either mode will be reflected. Beyond αcrit the Fresnel equations
have only complex number solution and that means there is no field strength or energy outside the material.
Light waves impinging at an angle >αcrit will be reflected right back into the material. αcrit is also known as
the angel of total reflection.

5.

That means that only light within a cone with opening angle < αcrit will be able to get of the material. It
should be clear to you that a serious problem concerning light emitting diodes, (LED) is encountered here.

6.

It's time for another exercise:

Exercise 5.2.2
Fresnel equations

Questionnaire
Multiple Choice questions to 5.2.2
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5.2.3 The Complex Index of Refraction

Dielectric Function and the Complex Index of Refraction

Light is an electromagnetic wave. We have an electrical field that oscillates with some frequency (around 1015 Hz as
you should now know by heart). If it impinges on a dielectric material (= no free electrons), it will jiggle the charges
inside (bound electrons) around a bit. We looked at this in detail in chapter 3.

An electrical field caused some polarization of the dielectric material. This lead straight to the dielectric constant εr.

Attention!
The word "polarization" above
and in chapter 3 has nothing to

do with the "polarization" of
light!

Attention!

Since the word "light" is synonymous to "oscillating electrical field", it is no surprise that εr is linked to the index of
refraction n = εr½.
For oscillating electrical fields we needed to look at the frequency dependence of the polarization and that lead
straight to the complex dielectric function εr(ω) = ε'(ω) + iε''(ω) instead of the simple dielectric constant εr. Go back
to chapter 3.3.2  if you don't quite recall all of this.

The dielectric function, after some getting used to, made life much easier and provided for new insights not easily
obtainable otherwise. In particular, it encompassed the "ideal" dielectric losses and losses resulting from non-ideality.
i.e. from a finite conductivity in its imaginary part.
So it's logical to do exactly the same thing for the index of refraction. We replace n by a complex index of refraction
n* defined as

n*  =  n + i κ

We don't use n' and n'' as symbols for the real and imaginary part but denote the real part by the (old) symbol n
and the imaginary part by κ. This is simply to keep up with tradition and has no special meaning.

We use the old relation between the index of refraction and the dielectric constant but now write it as

(n + iκ)2  = ε' + iε''

With n = n(ω); κ = κ(ω), since ε' and ε'' are frequency dependent as discussed before.

Re-arranging for n and κ yields somewhat unwieldy equations:

n2  = 
1

2





ε' 2  + ε'' 2 

½ 
 +  ε'





κ2  = 
1

2





ε' 2  + ε'' 2

½ 
 –  ε'





Anyway - That is all. Together with the Fresnel equations we now have a lot of optics covered. Example of a real
complex indexes of refraction are shown in the link.

So lets see how this works, and what κ, the so far unspecified imaginary part of n*, will give us.
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The Meaning of the Imaginary Part κ
  

First, lets get some easier formula. In order to do this, we remember that ε'' was connected to the "dielectric" and static
(ohmic) conductivity of the material and express ε'' in terms of the (total) conductivity σDK as

ε'' = 
σDK

ε0 · ω

Note that in contrast to the definition of ε'' given before in the context of the dielectric function, we have an ε0 in the
ε'' part. We had, for the sake of simplicity, made a convention that the ε in the dielectric function contain the ε0, but
here it is more convenient to write it out, because then ε' = ε0 · εr is reduced to εr and directly relates to the
"simple" index of refraction n
Using that in the expression (n + iκ)2 gives

(n + iκ)2  = n2 – κ2 + i · 2nκ  =  ε'  +  i ·
σDK

ε0 · ω

We have a complex number on both sides of the equality sign, and this demands that the real and imaginary parts
must be the same on both sides, i.e.

n2 – κ2  = ε'  
   

nκ  = 
σDK

2ε0ω

Separating n and κ finally gives

n2  = 
1

2




ε' + ε' 2  + 

σDK2

4ε02ω2 




½ 



κ2  = 
1

2





– ε' + ε' 2  + 
σDK2

4ε02ω2 




½ 



Similar to what we had above, but now with basic quantities like the "relative dielectric constant" since ε' = εr and
the total conductivity σDK.

Now lets look at the physical meaning of n and κ, i.e. the real and complex part of the complex index of refraction, by
looking at an electromagnetic wave traveling through a medium with such an index.

For that we simply use the general formula for the electrical field strength E of an electromagnetic wave traveling in a
medium with refractive index n*. For simplicities sake, we do it one-dimensional in the x-direction (and use the
index "x" only in the first equation). In the most general terms we have

Ex  = E0, x · exp i · (kx · x  –  ω · t)

With kx = component of the wave vector in x-direction = k = 2π/λ, ω = circular frequency = 2πν.

There is no index of refraction in the formulas but you know (I hope) what to do.

You must introduce the velocity v of the electromagnetic wave in the material and use the relation between
frequency, wavelength, and velocity to get rid of k or λ, respectively. In other words, we use
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v  = 
c

n*
 v  = ν · λ

k  = 
2π

λ
 = 

ω · n*

c
 

Of course, c is the speed of light in vacuum. Insertion yields

Ex  =  E0, x · exp i ·




ω · n*

c
 · x  –  ω · t





 =  E0, x · exp i ·  


  

ω · (n  +  i · κ)

c
 · x  –  ω · t 





Ex  =  E0, x · exp ·




i · ω · n · x

c
 –  

ω · κ · x

c
 –  i · ω · t 





The red expression is nothing but the wavevector, so we get a rather simple result:

Ex  =   exp –
ω · κ · x

c
  ·  exp[ i · (kx · x  –  ω · t)] 

     
  Decreasing

amplitude
Plane wave

Spelt out: if we use a complex index of refraction, the propagation of electromagnetic waves in a material is whatever it
would be for an ideal material with only a real index of refraction times a attenuation factor that decreases the amplitude
exponentially as a function of depth x.

Obviously, at a depth often called absorption length or penetration depth W = c/ω · κ, the intensity decreased
by a factor 1/e.
The imaginary part κ of the complex index of refraction thus describes rather directly the attenuation of
electromagnetic waves in the material considered. It is known as damping constant, attenuation index,
extinction coefficient, or (rather misleading) absorption constant. Misleading, because an absorption constant is
usually the α in some exponential decay law of the form I = I0 · exp – α · x or what we called W = c/ω · κ above.
Note: Words like "constant", "index", or "coefficient" are also misleading - because κ is not constant, but depends
on the frequency just as much as the real and imaginary part of the dielectric function.
 

Using the Complex Index of Refraction
  

The equations above go beyond just describing the optical properties of (perfect) dielectrics because we can include all
kinds of conduction mechanisms into σ, and all kinds of dielectric polarization mechanisms into ε'.

We can even use these equations for things like the reflectivity of metals, as we shall see.

Keeping in mind that typical n's in the visible region are somewhere between 1.5 - 2.5 (n ≈ 2.5 for diamond is one of the
highest values as your girl friend knows), we can draw a few quick conclusions: From the simple but coupled equations
for n and κ follows:

For σDK = 0 (and, as we would assume as a matter of course, εr > 0 (but possibly < 1?)) we obtain immediately n =
(εr)½ and κ = 0 - the old-fashioned simple relation between just εr and n. Remember that σDK = 0 applies only if

the static conductivity σstat is close to zero, and1.
we have frequencies where ε'' ≈ 0, i.e well outside the resonance "peak" for optical frequencies.2.

Generally, we would like κ to be rather small for "common" optical materials!

We also expect κ to be rather small for "common" optical materials, because optical materials are commonly
insulators, i.e. so at least σstatic ≈ 0 applies.

Let's look at some numbers now. With ω ≈ 1016 Hz and c = 3 · 1010 cm/s, we have a penetration depth W ≈ 3 · 10–6/κ.
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If, for example, the penetration depth should be in excess of 1 km (for optical communication, say), κ < 3 · 10–11 is
needed. It should be clear that this is quite a tough requirement on the material. How does it translates into
requiremetns for σDK or ε''?

Exercise 5.2.3
Attenuation and dielectric function

If we now look at the other extreme, materials with large σDK values (e.g. metals), both n and κ will become large.

Looking at the Fresnel equations we see that for large n values the intensity of the reflected beam approaches 100
%, and large κ values mean that the little bit of light that is not reflected will not go very deep.
Light that hits a good conductor thus will be mostly reflected and does not penetrate. Well, that is exactly what
happens when light hits a metal, as we know from everyday experience.

  
Questionnaire

Multiple Choice questions to 5.2.3
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5.2.4 Polarization and Materials

Linear Polarization

What kind of properties need a material have to have, so it linearly polarizes light?

For starters: if you run the light through the material, it needs to be transparent. But who says that you can only
polarize light by running it through a material? How about bouncing it off some material or, in other words, reflecting
it at some mirror-like surface?
This should trigger a flash-back. As you already know, it is perfectly possible to polarize light by utilizing reflection;
just look once more at the Fresnel equations.

All things considered, there are several ways to polarizes light, each one with its own requirements, advantages, and
disadvantages. Here we'll just take a first glimpse at some major polarizing methods.
1. Special geometries.

As we have learned under the heading "Fresnel equations", a non-polarized light beam impinging on any material
under some special angle ("Brewster angle") will produce a fully polarized reflected beam. Of course, some
materials are more suitable than others (the index of refraction should have a decent value, not too close to n=1 but
not too large either) but no special properties of the materials are required.
Using the "Brewster angle" approach is indeed a major way to produce polarized light. It is more or less limited to
"advanced" application, however, because there are some problems. Time for a quick exercise:

Exercise 5.2.4
Polarizers based on reflection

For everyday applications like your "Polaroid" sun glasses or the cheap glasses used for watching 3D movies in the
cinema, you need something less special and far, far cheaper. You need:

2. Polarization filters or foils

We have a typically thin and bendable transparent foil (or a thin unbendable glass-like sheet). Unpolarized light goes
in from one side, linearly polarized light comes out on the other side. There are two basic ways or principles for that:

The material contains "nanorod" conductors arranged in a grid with dimensions in the wavelength region.1.
The material is "birefringent" or in neutral terms, it is optically anisotropic, meaning that ε and therefore also
n are tensors.

2.

The bad news are: The second principle is the more important one!
The good news are: We are not going to look at that in great detail, since there is not enough time. Tensor optics
also may cause the bulk intake of large quantities of alcohol to soothe your brain, and you are too young for this.

The first principle is easy to understand:

Just imagine for a moment that you need to polarize radio waves with a wave length in the cm region and not light.
All you need to do is to use a bunch of aligned conducting rods as shown below:

Surprise! The polarization direction is not parallel to the rods as one would naively imagine but perpendicular to it.

It's clear what happens, though. The field components parallel to the conducting rods will simply be short circuited,
causing currents j=σE in the rod, and thus heating. The components perpendicular to the rods cannot cause much
current and pass mostly through. The figure above, by the way, is identical to a figure we had before except that the
symbolic polarizer in this picture has now materialized into a defined device or product.
If you wonder about possible diffraction effects at the grid: There aren't any if the distance between the rods is
smaller than a wavelength. Just do an Ewald sphere construction to see this.

The priciple, of course, also works for the electromagnetic waves we call light. All that remains to do, is to produce
aligned conductive rods on a 100 nm or so scale; nanorods in other words. Any ideas?
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Well, a guy named Edwin Herbert Land (1909 - 1991) had an idea - in 1932. Take a polymer foil that can easily be
stretched to a large extent (look at this link to get an idea), get some proper stuff inside (microscopic herapathite
crystals in Lang's case; funny things in their own right involving dog piss), and then stretch the whole foil, aligning
the little crystals. Use the link to get the full story.
I don't know what Lang thought when he did this. Some people (and text books) believe that he did align conducting
rods, indeed. Chances are that he did not, however. The herapathite crystals in Lang's case are actually very
complex crystals; their structure was found out only a few years ago. Herapathite (also known as
Chininbisulfatpolyiodid) forms intrinsically polarizing crystals, and all the stretching of the foil just insured that their
polarization axes were aligned.

So back to square 1: Any ideas of how to align conducting nanorods on a 100 nm or so scale?

Of course you have an idea: Use the basic micro (or by now nano) technologies of semiconductor technology and
produce something as shown in the picture below

Si nanorods (actually rather microrods but one could make them
smaller if required)

The rods shown consist of Si and they would certainly polarizes (IR) light besides doing a few more things (due to
their 3-dim.arrangement). It's however not a practical way for cheap mass-production stuff. Moreover, while light
coming out on the "other" side would certainly be linearly polarized, one can just feel that it would not be a lot of
light that makes it through the structure. More about this structure (which was not made for optics but for something
utterly different) in the link.
If we look a bit beyond "normal" optics into the far UV and IR, polarizing a beam is not all that easy and structures
as shown above might be the "future" in this case. Here is the link for some more information about this.
Time for the famous last word: I could not find out in April 2011 if there are actually (cheap) polarizing foils out there
that actually work on the "conducting rod" principle. So let's go for a third way.

3. Polarizing materials

A good polarizing material, e.g. some crystal and not a "foil", transmits an incoming beam without too much
absorption and emits one or even two beams that are more or less polarized.
We can already make one statement about the properties such a material must have: All directions must not be
equal since the polarization direction is per definition special. Isotropic materials like most amorphous stuff and all
cubic crystals, thus cannot be polarizing materials.
A stretched polymer foil is no longer isotropic since the polymer chains now are somewhat aligned in the stretching
direction. However, it will not necessarily polarize light. Try it!. Stretch some suitable candy wrap and see if it now
polarizes light. Changes are it will not. So just being structurally anisotropic is not a good enough condition for being
a polarizer.

That means we must now deal with not-so-simple Bravais lattices, crystals, or other structures. It also means that
properties like the dielectric constant εr and thus the index of refraction n, the conductivity σr, possible magnetic
properties, the modulus of elasticity (Young's modulus) and so on are no longer simple scalar number but tensors of
second, third or even fourth rank! We are now discussing crystalline "optical tensor materials".

Talk about opening a can of worms! Nevertheless, understanding and exploiting the tensor properties of materials
(mostly crystals) is where the action is right now (2011), and where it will be for the foreseeable future.
At this point I will only enumerate some of the important effects of tensor materials on polarization.
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Optical Anisotropy and Tensor Materials
  

The basic ideas are easy to state. First, if there is an optical anisotropy, it can take two basic forms (and then mixtures
of the two, of course):
1. The index of refraction depends on the crystal direction. The optical effects resulting from this are called
"birefringence" or double refraction (Latin: bi=two, twice, refringere=to break up, to refract).
2. The absorption depends on the polarization (and the crystal direction). In some directions far less light of
some polarization will come out after travelling through a crystal of given thickness than light polarized in the other
direction. This effect is called dichroism (Greek for two-colored).

It is an unfortunate word because historically it was used first for a different effect: White light is split into into
distinct beams of different wavelengths because of the crystal anisotropy and this is completely different from
regular dispersion! Since the absorption effect may strongly depend on the wavelength, too, everything can be mixed
up wonderfully. The word "pleochroism" ("more-colored") is occasionally used as a more general term, containing
all of the above.

You know, of course (?) that the two effects must be related because they must both be contained in the complex index
of refraction, which simply (haha) happens to be a tensor now. All tensor components are functions of the wavelength
because we still have dispersion and, since we also have the Fresnel equations, they must be functions of the
polarization, too
All we need to do now is to run through the derivation of the Fresnel equations once more. Just consider now a complex
index of refraction that is also a tensor of of second rank with a symmetry that is somehow related to the crystal
symmetry instead of a scale for boundary conditions and propagation. That would be a program that could entertain
(some of) us for many weeks - so we are not going to do it here.

It is important to realize, however, that with our modern computers this is actually an easy task. As soon as a basic
program has be written, and the functions describing the tensor components of the complex index are inputted, the
rest is child's play. That's why for you, the young Materials Science and Engineer, the complex index is so
important. For old guys like me it was not important, since we simply couldn't do the necessary math with a slide
ruler as the only math tool. We had to resort to approximations and special case studies, and that's where all these
fance names and distinctions comes from.

We are going to give the whole topic just a very superficial look, focussing on the practical side. As a first simplification
we simply ignore di- or pleochroism for the time being and only give birefringence a slightly closer look. We also ignore
absorption and thus the imaginary part of the complex index of refraction.

Recalling the little bit what we know about tensors, we are certain that there is always a coordinate system or
"axes", where only the diagonal elements of the refractive index tensor are different from zero. These axes we call
the principal axes of the crystal under consideration.
We then can always define three principal refractive indices n1, n2, n3 as the tensor components in the principal
axes system. Note that those n's will depend on the polarization and the wavelength. Of course, the principle axes
will be related to the symmetry of the crystal in some way.
The rest is math. Not too difficult if you are used to tenor algebra but a bit mind boggling for normal people like us.
For example, the dielectric displacement D or the Poynting vector S may no longer be parallel to the electrical field
E or the wave vector k, respectively. Now what would that mean?

Be that as it may, the fact of importance here is that in general, an unpolarized light beam entering an anisotropic
crystals splits into two orthogonally polarized light beams inside the birefringent material (typically a single crystal, a
collection of small aligned single crystals, or an amorphous foil "somehow" made anisotropic and birefringent). Two
different light beams thus will run through the crystal and eventually exit on the other side as shown below.

Incoming beam not along optic
axis (see below), but at right
angle to some surface.
⇒ No change of direction under
"ordinary" circumstances and
for the ordinary beam.
Pronounced change of direction
for extraordinary beam.

Incoming beam along optic axis
(see beleow) and at right angle
to surface.
⇒ No change of direction under
"ordinary" circumstances and
for both beams in birefringent
material. Both beams run
parallel but with different
velocities.
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The two figures above illustrate the basic effects that will occur. It is best to discuss birefringences for the two special
cases shown
1. case: The incoming (unpolarized) beam is not parallel to a principal axis of the crystal but its angle of incidence is
90o, i.e. it is exactly perpendicular to the surface of the crystal. This is a special condition, but not so very special
because it is easy to do in an experiment, All you need are some flat surfaces.

For an isotropic material with a scalar index of refraction n we know that there will be no refraction or bending of the
beam. A little bit will be reflected (see the Fresnel equation), and the polarization does not matter. The transmitted
beam will travel through the material at a velocity c=co/n.
Exactly the same thing happens for the ordinary wave or o-wave in our tensor material here. However, the o-wave
now is fully polarized as shown
But in major contrast to isotropic materials with a scalar n, an extraordinary thing happens in our birefringent
material with a tensor n. An extraordinary wave or e-wave is also generated at the interface. This e-wave travels
under some angle with a velocity that is different from that of the o-wave. The e-wave is also fully polarized, but with
a direction orthogonal to that of the o-wave.

2. case: The incoming (unpolarized) beam is parallel to an optical axis of the crystal, and its angle of incidence is still
90o, i.e. it is exactly perpendicular to the surface of the crystal. This is a rather special condition now because it means
that our crystal must have a planar surface perpendicular to an special crystal direciion.

The so-called optic axis of the birefringent crystal is coupled to our principal axes from above. We have something
new now (or just an extreme case of the general situation).
The o-wave and the e-wave travel in the same direction=optic axis but with different velocities. Both waves are still
fully polarized in orthogonal directions.
The two waves emerging form the crystal then have different phases. The exact phase difference depends on the
distance covered inside the material, i.e. on the thickness of the material.

That's just a description of what you will observe, of course. Calculating the relative intensities of the two beams, the
intensities of reflected beams (??? (there is only one)), the two angles of refraction, the polarization directions, and the
propagation velocities from the index of refraction tensor is possible, of course—but well beyond our scope here.

One question remains: How many optic axes are there? The answer is: Two for "fully" anisotropic material and one
for somewhat more symmetric materials. That tells you that the optic axis and the principal axis are not the same
thing because we always have three pricipal axes. It's all in the table below.

Dielectric tensor in principal axes

Anisotropic Materials Isotropic Materials

εr  = 




ε1 0  0 
0  ε2 0 
 0  0  ε3





εr  = 




ε1 0  0 
0  ε1 0 
0  0  ε3





εr  = 




ε1 0  0 
0  ε1 0 
0  0  ε1





General case
Two optical axes

Practical case
One optical axis

Simple case
All directions / axes are

equal

Mica ε3 > ε1
Positive
uniaxial

ε3 < ε1
Negative
uniaxial

Glass
Diamond
Cubic crystal
(NaCl, CaF2, Si, GaAs, ..)

Ice
quartz
TiO2 (rutile)

Calcite
(CaCO3)
Tourmaline
LiNbO3

I can't end this chapter without a quick reference to the ubiquitous direct effect of birefringent crystals discovered long
ago. There is deceptively simple effect already known to Huygens and Co: Take an "Iceland spar" crystal (CaCO3 or
calcite; easy to get), put it on some paper with writing on it and you see everything twice (see below).

Here are some pictures taken in my office:

Advanced Materials B, part 1 - script - Page 205

http://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_5/advanced/t5_1_1.html


Birefringence with a calcite crystal

Circular and Elliptical Polarization
  

The topic is now to produce circular and elliptical polarization. This is easy because we already did that just above
where we read: "The two waves emerging form the crystal then have different phases"

That sentence addressed the ordinary and extraordinary beam traveling in parallel along one of the two (or just the
one) optic axes of a birefringent crystal.
The two beams travel in parallel—but with different speeds. So the have different phases at different depths. If we
want circular polarized light, we just have to make sure that the thickness of the material we use has the right value
for a phase difference of π /2 between the two beams. The beams emerging then have exactly the phase difference
needed for circular polarization.

So far - so easy. Now let's do it in reality. You need a circular polarizer, and you now have all this textbook knowledge.
What's next?

Easy. You look into proper catalogues and buy a "quarter lambda plate" with a thickness d given by

(ne –  no ) · d  = λ/4

Then you laminate it with a linear polarizer to make sure that only light polarized in a certain direction enters the
quarter lambda plate. What you get is one part of the glasses you get for watching 3-dim. movies. Alternatively, you
just take those glasses with you, and you have two circular polarizers (plus the linear ones) for free. Don't ask me,
how it is possible to make those optical components for very little money. I don't know—but intend to find out.

  
Questionnaire

Multiple Choice questions to 5.2.4
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5.2.5 Not so Perfect Materials

Specular and Diffuse Reflection

A piece of paper has a fairly flat surface but you can see it from all directions. Why? Clouds are formed by condensed
water in the atmosphere and you can cleary see them radiantly white against a blue sky. Why? Before you answer,
consider that you can't see the uncondensed water vapor even so the water concentration is about the same as in the
cloud. And why, exactly, is the sky blue? Why is milk (= water with a few percent of fat) white but water with a few
percent of alcohol colorless and transparent? Even if it contains far more than a few percent of e.g. alcohol?

The answer to the first question should be obvious. Even if the reflection law is fully valid for white paper, i.e. αin =
αout, every pixel of it is normally hit by light coming from all direction so some of it will always be reflected right into
your eye.
Sure. Now go and shine a Laser beam on a piece of paper in an otherwised completely dark room and you will still
see the paper, no matter from which direction you look at it. Obviously some of the Laser light is still scattered into
your eyes even so the beam reflected from its general surface goes somewhere else. Why? Because the paper is
not really or optically flat. Some parts of it always reflect light in the direction you are looking.

We are now looking at the interaction of light with matter of not-so-perfect properties, especially at matter with properties
that change on a small length scale.

  

 The paper, for example, is not perfectly flat but has a roughness on some
length scale far larger than the wavelength of light, but smaller than what
your eye can easily resolve as shown in the picture. Some parts of it thus
are always reflecting the light into your eye.

Condensed water vapor means you have small water droplets suspended
in the atmosphere (if they're too big, they fall down and we call it rain);
milk means you have some small emulgated grease particles in the
water.

  Light is scattered at those small things in all directions and the
scattering of light is one topic we encounter if we look at not-so-perfect
materials

 Since "small"and "large"are relative values we must use the obvious natural
length scale when dealing with light as our ruler and that is of course the
wave length λ ≈ 1 µm. We then distinguish three cases depending on the
length scale lmat inherent to our material

  lmat << λ: The extreme case would be scattering at single atoms
or molecules. Proper nanoparticles also belong into this group.
This kind of scattering is called Rayleigh scattering.
lmat >>λ: No problem, we covered that already. Just look at any
part of the sample by itself, apply what we discussed before, and
then add up across the sample
lmat ≈ λ: Now we have a problem. What will happen in this case
is difficult to deal with and no general rules apply. This kind of
scattering is called Mie scattering.

 

Let's look at the easy stuff first and define some terms.

Specular reflection is the new word for the αin = αout "normal" reflection. The only difference is that now we take
the α's with respect to the "average" surface as shown below.

Diffuse reflection is reflection in all other directions. It is easily conceived as "proper" reflection from those parts of
the surface that deviate from the average.
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It is clear that the relative magnitudes of both reflection types depends on exactly what the surface looks like at a small
scale, and that one could have all kinds of reflected intensity distributions vs. angle. It is thus convenient to characterize
a surface (for a given wave length) by polar diagrams as shown below

An "optically" smooth surface scatters only little light outside the specular reflection direction, a perfectly rough
surface scatters evenly in all directions, producing a polar diagram that can be typically described by I = I0cosα.
It is clear that "optically smooth" means that all deviations from the average perfect surface, i.e. all quantitative
roughness parameters, must be substantially smaller than the wavelength of the light considered.
If we take optics to the extreme, e.g. with DUV or EUV (= deep or extreme ultraviolet) lithography with wavelengths
down to the 20 nm region, we need to use mirrors for reasons discussed before. Those mirrors need to be large
(numerical aperture is important) and flat to atomic dimensions! Not so easy to make and calibrate!

  

Transparency, Translucency, Opacity
  

Now let's look at light beams transmitted through a not-so-perfect but basically transparent material. Those materials,
by definition, have a small κ value, i.e. a small imaginary part of the complex index of refraction or, same thing, of the
dielectric function.

As shown in the picture, we have

Specular and diffuse reflection at the surface the light is impinging on. This is descirbed by the polar diagram
characterizing this surface.
Scattering of the transmitted light (running in different directions) at defects or imperfections contained in the
material (fat droplets in milk, air bubbles in glass, ...).
Specular and diffuse reflection at the internal surface the light is coming out off. This is described by a
(different) polar diagram characterizing this surface.

If your material is not fully transparent (i.e. looking through it you hardly notice it is there; for example optical
glass), light will come out in all directions and we call it translucent, for example etched glass or milky glass. If a
lot of the light is refelcts and absorbed internally, nothing much will come out at all and we call this material
opaque, for example china ware or "milky" ice.

Of course we can put some numbers on the properties transparency, translucency, and opacity, but we will not do that
here.

Suffice it to say that good transparency is a rather rare property -even for materials with intrinsically small κ and
thus little absorption. Most ionic crystals and oxides, e.g. Al2O3 are perfectly transparent as ideal crystals; this is
also true for many polymers. Your chinaware and almost everything else made from those materials, however, tends
to be rather opaque and at best somewhat translucent if it is thin.
The reason are imperfections of surface and in the bulk of the material. Any defects not far smaller than the
wavelength of the light will make their presence felt by scattering some of the light in unwanted directions.

Metals are also rather opaque but for a different reason. Since their free electrons can absorb arbitrary energies and
momenta, incoming photons quickly find a suitable electron that will "take" their energy and momentum, "absorbing" the
photon within a few nanometers below the surface.

Scattering or no scattering - nothing will come out on the back surface in either case.
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The picture above contains a small puzzle - did you notice?

The main beam is drawn nicely refracted at the air - material boundary. For doing this you need an index of
refraction for the material. What is the index of refraction for an optical compound material? The question is
reminescent to, e.g., Young's modulus for compound materials.
The answer, not unexpectedly I hope, is: As long as the constituents of the compond are small enough, it is
possible to define a compound index of refraction that is a weighted average of the individual indexes.
Eaxtly how you do this might be tricky but there is nothing special here.

   

Rayleigh Scattering
  

Why is the sky blue? Because the air molecules scatter blue light stonger than red light.

So if you don't look at the sun directly, only scattered light scattered somehow in the atmosphere can reach your
eye. The more you look in a direction away from the sun, the bluer the light will be. Actually, it should be violet but
because the eye is not very sensitive to the shortest still visible wave lengths you are biased towards blue.

Atoms and molecules are far smaller than the wave length of light so we are talking Rayleigh scattering here. In contrast
to Mie scattering occuring for particles with sizes comparable to the wave length, Rayleigh scattering can be treated
analytically. Here we only look at the major points of this treatment.

The figure shows the basic situation. An incoming light beam in the form of a plane wave with some energy or
intensity (per cm2) is transmitted to some extent and scattered to some other extent. We assume that scattering
happens evenly in all directions, symbolized by the spherical wave emanating from the atom / molecule.
In the particle pictures, a stream of photons with some flux density or power per cm2 and second hits the atom /
molecule. A given photon is either not affected at all and just continues going straigtht, or deflected (= scattered)
into some other directions with equal probabilities for all directions.

If we relate the total power (= energy per second) Psc contained in the scattered part to the intensity I = power per cm2

contained in the incoming beam, i.e. from Psc/I = σ, the quantity σ has the dimension cm2 and is therefore called the
scattering cross section.

It is easy to understand the meaning of the σ. The energy or the power contained in the incoming beam that flows
through an an area of σ cm2 is what will be scattered out of it.
We might expect that σ scales roughly with the (two-dimensional) size of the scattering particles, i.e. we expect it
very roughly to be found in the 10–19 cm2 region.

Why does an atom / molecule scatter light?

Read up chapter 3.3.3 and you know. The electrical field of the incoming wave jiggles the electrons of the particle
("electronic polarization"). Accelerated electrons (that's what jiggled electrons are) emit electromagnetic radiation (=
light) with the frequency they are jiggled with, which is the frequency of the incoming light. The total effect is the
scattering of the light.
Looking a bit deeper into the characteristics of radiation emittance of jiggled electrons (the word "antenna" comes
up in this context if we look at it wiht electrical engineers eyes), one finds that the power radiated into space scales
with ω4 or λ–4. Going through the math for a particle with volume V one obtains

σ  =  
P

I
 ≈  

ω4 V2

6πc4

If we have density of n particles (= atoms / molecules / whatevers) per cm3, we can estimate the penetration depth or
absorption length lsc; i.e. the length after most of the incoming radiation has been scattered off and nothing comes out
anymore, to
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lsc  =  
1

nσ

This calls for an exercise

Exercise 5.2.5
Rayleigh Scattering

   

A Bit More to Scattering
  

We have now dealt with most of the questions from above directly or indirectly:

A piece of paper has a fairly flat surface but still you can see it from all directions. Why? Because it is far from
being optically flat and we have diffuse reflection and not just specular reflection. On top of that we might have some
Mie and Rayleigh scattering at the small and very small inhomogeneities.
Clouds are formed by condensed water in the atmosphere and you can clearly see them radiantly white against a
blue sky. Why? - considering that you can't see the uncondensed water vapor even so the water concentration is
the same.. We have Rayleigh scattering at the small water droplets and since the scattering cross section scales
with V2, small water particles containing n water molecules scatter the light far more strongly than n water
molecules far apart.
Why, exactly, is the sky blue? Because Rayleigh scattering increases sharply (fourth power) with decreasing wave
length. It is blue and not violet because the sun emits more blue than violet photons and our eyes are more sensitive
to blue than to violet.
Why is milk (= water with a few percent of fat) white but water colorless and transparent? Even if it contains far more
than a few percent of e.g. alcohol? See above.

One last point needs to be made. If we consider large water droplets or simply a pool of water (huge droplet), it doesn't
seem to scatter light very much. If the surface would be perfect (consider a perfect ice crystal for the sake of the
argument) there would be some perfectly specular reflection but nothing else. Why?

The reason is that for Rayleigh scattering from water droplets far smaller than the wavelengths, the electrical fields
of the waves coming from each of the n water molecules of a small droplet have all pretty much the same phase.
The phases of the scattered waves from randomly distributed molecules then are random, and you know what that
means.), so it is small wonder that scattering increase with volume or number of molecules squared.
If the droplets get larger we first enter the (difficult) regime of Mie scattering and we don't know off hand what we are
going to see. For really large volumes, e.g. a visible ice crystal, we know what we will see. however. What has
changed now is that for any wave send out by some atom at the surface via scattering on some direction other than
the direction of specular reflection, some other atom at the surface produces an identical wave but with reversed
phase. So all intensities cancel - except in the specular reflection direction.
The transmitted light cannot be scattered at all at the atoms of a perfect crystal (or "liquid"). Only imperfections like
small precipitates or voids in crystal or fat globules in milk will scatter.
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5.2.6 Principles of Generating Light

General Considerations

So far we have looked at how light interacts with matter; eventually disappearing by some kind of absorption. Here we
look - very briefly - at the principles of generating light.

If we were to look at all the electromagnetic radiation there is - from long wave radio to γ rays - we would now have
to start a long lecture course by itself. Even if we restrict ourselves to visible light plus a bit of infrared and
ultraviolet, we still have a large task ahead of us.
In the context of this lecture course we can do no more than to enumerate major light generating principles together
with a few key properties.

Any light source will be characterized by the kind of light it produces. For that we look first at the properties of the
light produced :

Monochromatic or polychromatic. In the latter case we want to know the spectrum. The link gives an
example, it shows the spectrum of our most important light source.
Spectral details. Even for monochromatic light of wavelength λ we need to know details like the spread ±∆λ
and the stability in time, i.e. (t).
Emission characteristic. Is the light emitted in just one direction (as in a Laser beam), in all directions
evenly, or with some angular characteristics?
Polarization. Is the light polarized linearly, circular, elliptical or not at all (meaning that all polarization
directions occur with the same probability).
Intensity or energy density. Possibly as a function of λ, emittance angle, polarization and so on.

Being technically minded we are just as interested in technical properties:

Power efficiency ηlight, telling us how many percent of the energy flowing into a light source comes out as
energy of light we want.
Luminous efficacy, telling us how the eye perceives efficiency. In other words, if a green and violet light
source have the same efficiency and produce the same number of photons per second that are entering your
eye, the green one will have a far higher efficacy, appearing brighter, because the eye is far more sensitive to
green than to violet light.
Device lifetime. After how many hours of operation do you have to replace your light source by a new one?
Maintenance. Is some regular service needed including, e.g., replacements of parts or re-calibration?
Costs. How much do you have to pay for the device up front? How large are the operating costs?

The technical properties are the more interesting ones for everyday life. For very basic research it might be the other
way around.

Roughly 20 % of the electrical energy produced on the planet goes into light production. This is more electricity than all
nuclear and water power plants produce.

The CO2 produced just for illumination is about 70 % of that from cars and three times more than that from air traffic.
The picture gives an idea of what that implies.

The planet at night showing artificial illumination.

Given the energy and climate crisis, the need for new light sources with high efficiency / efficacy is obvious.

Helping to save the planet in this way is one of the major jobs for Material Scientists and Engineers. Right now, and
for many years to come.

Hot Bodies as Light Sources
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Hot Bodies as Light Sources

Anything very hot emits light and if the "anything" is a "black-body" we know the spectrum emitted as a function of
temperature because this is is given Planck's famous equation

Eν · dν  =  
  

  8 · π · n3 · (hν)2

h3 · c3 · kT
 · d(hν) 

  
For an elegant derivation see this link

Light generated by hot bodies we call "black body radiation" or incandescend light, resulting from
incandescence
The temperature of the sun surface is about 5800 K. Tungsten (W), the typical filament material of a light bulb,
melts at 3683 K. The temperature of the light emitting part of a light bulb is thus around 3000 K. If you look at the
spectrum above, one conclusion is inevitable:

Black body radiation light sources will always have a lousy
efficiency

Most of the radiation emitted is not in the frequency range of interest, and there is little you can do. Moreover, quite
a bit of the energy input is wasted by simply heating the device. Ideal black body radiators at 4000 K or 7000 K have
efficiencies around 7 % or 14 %, respectively. Our ubiquitous light bulb converts the electrical power UI flowing
through with an efficiency of about 5 % to light energy.
Since a lot of the electrical energy produced goes into light, and given the current and future energy crisis, this
needs to be changed presto. There is thus no choice but to employ another principle for producing light

   

Light from "Cold" Bodies

Hot bodies emit light because thermal energy is sufficient to move electrons up to all kinds of high energy levels Ehigh
from which they transit to all kinds of lower lying levels Elow. Since all kinds of Ehigh – Elow occur, the spectrum
emitted covers a large wavelength region.

If we want to make light more efficiently we have to make sure that ∆E = hν's available for electrons are in the
visible range. Do we have examples for that?
Words like "Luminescence" or "Phosphorescence" come to mind. Certain materials (called "phosphors" on
occasion) have convenient energy levels for visible light production and as soon as you feed them "somehow" with
energy so their electrons can populate the upper energy levels, they start to luminesce or phosphoresce. The
difference between those modes is simple:

Luminescence: General name for "cold" light production
   
Fluorescence:  Light production shortly after energy input

Short life time of excited level (< µs)
   
Phosphorescence:   Light production long after energy input

Long life time of excited level (> ms)

So what we want is fluorescence. The big question now is how we "excite" the luminescent material. In other words,
how do we supply the energy flow necessary for kicking those electrons up to the proper energy levels all the time. Let's
enumerate the major possibilities. A more complete list can be found via the link
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 Cathodoluminescence refers to the use of "cathode rays" or simple electrons with sufficient energy. The
light generated by good old TV tubes (before the advent of flat panel displays) is generated by
cathodoluminescence and so is the light from "fluorescent tubes".

1.

Electroluminescence refers to excitation by simply running a current through the system that neither heats
nor generates a plasma but moves carriers to the high energy level called conduction band in this case.

2.

Photoluminescence refers to excitation by light of a somewhat higher energy than what we want to
generate. Seems to defy the purpose but is nonetheless an important mechanism as we shall see.

3.

 This link lists about 10 more types of luminescence; some with quite interesting properties.

Cathodoluminescence is the principle behind what we generally know as fluorescent lamp or fluorescent tube. We
have a gas-discharge lamp and the electrons in the plasma have enough energy to excite the mercury vapor in the
plasma produced. The excited mercury atoms then produce ultraviolet light that then causes a phosphor to fluoresce,
producing visible light. So we do have indirectly photoluminescence in there as well.

The major advantage is a good efficiency around 20 %. A typical spectrum is shown below, the green bar marks the
visible region.

The picture makes clear why luminescence can have a high efficiency: A lot of the energy going in comes out as
light with sharp frequencies in the visible range. There is no need to always produce a lot of infrared and ultraviolet
light in the process.
The disadvantages are clear, too. Mercury (Hg) is needed, causing environmental hazards, and the rare earths
Terbium (Tb) and Europium (Eu) are called "rare" for a reason. Right now (2011) China controls around 90 % of the
rare earth market and what that means is that prices are bound to go up in years to come. You also have to condier
that teh ligh tmay appear white because it haas trhe right moc of wavelnegth but that its spectrum is rather different
form that of the sun or any other black body radiator.
Using direct photoluminescence as light source is of course (?) ridiculous so we won't discuss it any more.

This leaves us with electroluminescence or, to use another word for essentially the same thing, radiant electron - hole
recombination in semiconductors. In yet other words: I'm now turning to LEDs as light sources.

This can be done with very large efficiencies. We are talking the future of lighting here.

How it's done we will see briefly in chapter 5.3. Otherwise use these links

LED's simple
LED's involved
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5.2.7 Specialities

Before we move on to more technical optics, we need to consider a few special effects that are of some importance to
optical apparatus and not yet directly covered like (Rayleigh) scattering or indirectly like diffraction gratings. The list
could be rather large, we restrict ourselves to a few effects here, however

  
Fresnel Lens

Recalling that a lens "bends" the light rays impinging on it only at the air - lens interface while nothing much
happens inside the glass, Augustin-Jean Fresnel, whom we encountered before, had the great idea to turn this
principle into practical use. Here is what a Fresnel lens looks like; the principle is obvious:

Pictures from Wikipedia

Principle of Fresnel lens Large Fresnel lens in lighthouse

It wasn't so easy way back to shape glass like that. Nowadays it is easy, especially if you use plastic material and
just press it into form. Fresnel lenses are no all over the place - as long as the ultimate in resolution doesn't matter.
The "tips" at the singularities scatter light to some extent. and if you make the structure too dense, you run into
diffraction effects at the periodic structure.
 

Optical Activity

Optical Activity generally is a type of birefringence. It describes materials that rotate a linearly polarized wave as it
travels through the material. All materials with some chiral symmetry (i.e. where you find some kind of "spiral"
inside show this behavior (provided, of course, they are sufficiently transparent)
The typical material is quartz but its internal spiral is not so obvious., So take DNA, where the spiral is obvious. Run
light through such a material and its polarization vector either turns clockwise ("right") or counterclockwise ("left"),
depending on how the internal spirals are "wound"
Do not confuse optical activity with circular polarization, In both cases the electrical field vector rotates but for
circular polarized light a full rotation occurs in the space of a wavelength, where it might take many mm of active
material for that.

There are plenty of applications:

Most prominent, perhaps, is what "Polarimeters" do. The measure how much a given substance at controlled
conditions rotate light. This is very valuable in biology or medicine because most "biological" molecules are optical
active - but invariably only "leftish". This means that all biomolecular spirals are always wound in just one way.
Amazing! Think about that. So be careful when that sexy alien arrives. If she or he is wound the other way, all kinds
of trouble will ensue on close contact. If you measure the amount of rotation in a controlled experiment, you can
derive the concentration of the active molecules.
Next we note that in the presence of magnetic fields, all molecules have optical activity. This is called the Faraday
effect and is treated right below.
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Faraday effect

The picture shows it all. An incoming linearly polarized beam turns its polarization direction by an angle given by

β = bd · ν. The Verdet constant ν contains the material property as some number in minutes of angle per

Oersted/cm (nobody really working in magnetics uses SI units). We have for example: ν(diamond) = 0,012;

ν(glass) ≈ 0,015 - 0,025; but crystals like terbium gallium garnets might have far larger values.

Picture from Wikipedia

The obvious thing to do now is to derive the equations from above and to calculate the Verdet constant. Well, forget it.
Just to give you an idea of what it would involve:

What we would need to do is to go over the driven damped harmonic oscillator once more (we looked at that in
some detail in the context of dielectric polarization mechanisms). But now we must add the force that the magnetic
field exerts on the charge. Instead of just -eE(ω) as (oscillating) driving force we have now -eE(ω) – e · (dx/dt × B).
This will change the dielectric susceptibility χ resulting from the solution - it will turn it into a tensor! It's not difficult
to see why: The magnetic field produces a force that is at right angles to the principal axis of motion. The problem is
thus no longer one-dimensional and the amplitude and thus the polarization will have components in other than the
x-direction.
In other words: An electric field in x-direction applied to a cubic crystal will only produce polarization on the crystal
surface perpendicular to the x-direction, let's say the (100) sides, and it doesn't matter if the field oscillates or not for
that. The dielectric susceptibility is proportional to the oscillation amplitude with the known frequency dependence.
Now add a magnetic field - static or not - and the other surfaces of the cube will now become charged or polarized,
too. A simple consequence is already that in a static magnetic field all materials are anisotropic because the
polarization vector is no longer parallel to the electrical field vector.
What is the Faraday effect good for? Well, you can measure magnetic fields with it. In particular if those fields are
far away like in the next sun system or galaxy. Astrophysics is very big on using the Faraday effect but in terrestrial
terms it is not used very much.

 

Kerr Effect

There are two Kerr effects:

The magneto-optic Kerr effect (MOKE). It describes how an applied magnetic field changes the reflection
from some material.
The electro-optic Kerr effect, also called the quadratic electro-optic effect (QEO effect), describes the
change in the refractive index of a material in response to an applied electric field.

If a magnetic field is turned on (or is present because the material is ferromagnetic), the polarization and the
intensity of reflected light might be different from what on would calculate with the Fresnel equations. How exactly
depends on the material and the components of the magnetic field on the surface
The magneto-optic Kerr effect is identical to the Faraday effect from above but deals with the reflected and not the
transmitted light. It is very useful because it allows to image magnetic domains. The link shows examples and here
is one from the Uppsala University / Materials Physics:
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The electro-optical Kerr effect describes an electrical field induced index change that is proportional to the square of the
electric field; i.e. the intensity. If the index changes linearly with the field, the effect is called Pockels effect, see right
below.

All materials show this quadratic electro-optic effect but certain liquids display it more strongly than others. The
electro-optical Kerr effect can and has been used to modulate light because it still works at very high frequencies.
There is an fascinating emerging special use. If one does not apply the electrical field by conventional means (i.e.
by applying a voltage across two electrodes) but by (intense) light, all kinds of strange things can happen. One
needs strong electrical field not usually found in normal light (look at exercise 5.1.-2). So we use an intense Laser
beam. The resulting (always nonlinear) optical effects go by names like self-focusing, self-phase modulation,
modulational instability, and Kerr-lens modelocking. Whatever that might be (google it), we can expect to find
applications based on that in the not too distant future
 

Pockels Effect

The Pockels effect produces birefringence in an optical medium by applying a constant or varying electric field. It is
distinguished from the Kerr effect above by the fact that the birefringence is proportional to the electric field, whereas
in the Kerr effect it is quadratic in the field.
The Pockels effect occurs only in crystals that lack inversion symmetry, such as lithium niobate or gallium arsenide
or special polymers or glasses, while the Kerr effect occurs in all materials.
Concerning applications one only needs to consider that optical communication via glass fibres depends on
Pockels cells. Modulating light intensities with GHz or even THz simply cannot be done otherwise.
 

Concluding Remarks:

1. Above several effects are listed where electric or magnetic fields superimposed on some optic material does
"something" to light. There are even more of those "named" effects not shown here, and they all have one thing in
common:

All that light can do inside material is to change what the electrons are doing. Since any change of what an electron
is doing involves a change of it state, only electrons at the Fermi edge can do something, as we have asserted
many times before.
What a simple oscillating electrical field will do (i.e. a light wave) we have already treated with a simple mechanical
model, when we discussed the frequency dependence of polarization mechanisms. Straight away we got the
complex dielectric function and thus also the complex index of refraction.

All we need to do to cover all the effects of electric and magnetic fields on optics is to include the forces on the electron
they add in addition to the force produced by the electric field of the light wave. The equation above for the Faraday effect
hints at that. The new equations, however, are not so easy to solve any more. What we generally find is

In the case of a isotropic material it now becomes anisotropic. Dielectric constant εr, susceptibility χ and
index of refraction n (all simply related as you know) become tensors.
Those tensors may have imaginary components.
Any light wave can always be decomposed into two light waves with orthogonal polarization. They will travel
through the material now with different wave vectors . We have two beams now.
In the case of an anisotropic material things get really complicated
In the case of high field strength of the extra field, things get also non-linear.

So we have been lucky. Even if you hate the mathematical complexity, you must appreciate that a lot of useful
effects result that are not even remotely exhausted at present. That's where some of you might find useful (and well
paid) work to do!
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If you look at the applications listed above, one very major application is conspicuously missing. Close your eyes and
think. For which product that you use daily is it absolutely essentialy that you can influence the transmittance of light by
an electrical field?

Right - liquid crystal displays (LCD) or practically all computer monitors, many TV's and plenty of cell phone
displays. An electrical field between the transparent electrodes) of a pixel change the polarization properties of the
liquid crystals inside that capacitor and those how much light is transmitted. Are we using the electro-optical Kerr
effect here? Or the Pockel effect? Personally, I don't know for sure. But I know that it doesn't matter. It's time to
leave the past behind and look at the general picture and not at enumerated experimental descriptions of effects
observed some 100 years ago.
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5.2.8 Summary to: Optics and Materials

The task:
Calculate and understand intensities, angles, phases,
polarization and attenuation (damping) of the various
light beams shown from the materials properties

Still assuming a perfectly flat surface

First step: Decompose impinging light into two waves
with polarization in he interface plane (TE case) or at
right angles (TM case)

 

Energy conservation yields for the intensities:  

Itr(z = 0)  =  Iin – Ire
 

 
Boundary conditions as shown in the figure involve the
"dielectric constant ε and thus the so far only relevant
material property.

 

Considering energy (proportional to E2) and
momentum (proportional to k2") conservation for the
TE and TM case separately yields the Fresnel
equations that provide the answers to the
questions above

 

 A wealth of insights and relations follow, e.g. or field
strength E or intensities I:

 

  
Eref

Ein

  =  – 
n – 1

n + 1
    

Iref

Iin

 
 =  





n – 1

n + 1





2

 

 one consequence as example for the power of these
equations: n = 2 means that almost 10 % of the
intensity will be reflected, implying that for optical
instruments you must provide some "anti-reflection"
coating.

 

 
Using the complex (and frequency dependent "dielectric
constant ε(ο) = ε' + iε'' yields the complex index of
refraction

 

n2  = 
1

2





ε' 2  + ε'' 2 

½ 
 +  ε'





κ2  = 
1

2





ε' 2  + ε'' 2

½ 
 –  ε'





 
n*(ο)  =  n + i κ

 

The imaginary part κ describes the attenuation
(damping) of the transmitted wave in the material.
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Polarization and Material2. How to polarize a light
beam

1. Geometry. Use Fresnel equations to produce a
polarzed beam under specific angles ("Brewsater
angle")

1. Polarization foils = alined conducting rods (of
possibly molecular size) "short-circuiting" the
electrical field in on direction.

 

3. "Tensor" materials with optical anisotropy  

Theory can an get rather involved; products can be
extremely simple and cheap (e.g. circular polarizer in 3-
D movie glasses)

 

 

Not so perfect materials and properties like specular
and diffuse Reflection, transparency, Translucency,
Opacity.

Light is scattered at small things in all directions
and the scattering of light is the major topic
encountered if we look at not-so-perfect materials
The picture illustrates:
Specular and diffuse reflection at the surface.
Scattering of the transmitted light (running in
different directions) at defects or imperfections
contained in the material (fat droplets in milk, air
bubbles in glass, ...).
Specular and diffuse reflection at the internal
surface the light is coming out off. This is described
by a (different) polar diagram characterizing this
surface.

 

Scatter mechanism depend on the size lsca of the
scatterer" relative to the wavelength:
lsca << λ: The extreme case would be scattering at
single atoms or molecules. Proper nanoparticles also
belong into this group. This kind of scattering is called
Rayleigh scattering
lsca >>λ: No problem, we covered that already. Just
look at any part of the sample by itself.
lmat ≈ λ: Now we have a problem. What will happen in
this case is difficult to deal with and no general rules
apply. This kind of scattering is called Mie scattering

 

     

Generating Light
Two basic cases: Luminescence: General name for

"cold" light production
   
Fluorescence:

 

Light production shortly
after energy input. Short
life time of excited
level (< µs)

   
Phosphorescence:

  

Light production long
after energy input. Long
life time of excited
level (> ms)

Light from hot bodies. Planck radiation law applies.
Efficiency tends to be low

Light from "cold" bodies or luminescence  

There are many types of cold light production. Of
utmost importance is electroluminescence or, to use
another word for essentially the same thing, radiant
electron - hole recombination in semiconductors.
In yet other words: It's the LED, the light emitting
diode..
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Specialities
Fresnel Lens
Optical Activity
Faraday effect
Kerr Effect
Pockels Effect

Forget it. The list names some, there are many more.

That's where serious "optics and material" starts. This
would need another full lecture course
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5.3 Optical Components

5.3.1 Light Sources

Conventional Light Sources

There is not much to say about conventional light sources like simple light bulbs, "halogen" light bulbs, gas-discharge
sources and so on. You all are quite familiar with them. What follows gives the bare essentials.

Thomas Edison is usually credited as inventor of the light bulb in 1880 but there were many others working on
"light bulbs" as early as 1840. Edison's breakthrough probably was due to a combination of three factors: an
effective incandescent material, a higher vacuum compared to others, and a high resistance that made power
distribution at high voltages from a centralized source economically viable.
Consider a 100 W bulb operated at 230 V. It draws 0,44 A and thus has a resistance of 227 Ω. This is not easily
achieved with the metal wires then available. Edison of course, used carbon. It took until about 1905 before tungsten
(W) filaments were used and until about 1913 before an inert gas like N2 was inside the bulb instead of vacuum.
In fact, present day light bulbs are high-tech objects despite their lowly image. If you have doubts about this
consider: How would you make a "coiled coil" filament as shown below for a standard 1 € light bulb a from an
extremely hard to shape material like W in such a way that it is extremely cheap?

Edisons light bulb Modern double coiled W filament

Source: Wikipedia

It is hard for us to imagine the impact of "easy" light on humankind. Nevertheless, the 120+ years of illumination by
incandescent light has to come to an end right now for reasons already given
Fluorescent and gas discharge light sources have better efficiencies (and efficacies) than "black body radiators" but are
not without problems of their own.

The pictures tells it all, just look at the LED branch. No more needs to be said about "conventional light sources".

HID = "high intensity discharge" light bulb;
the "Xenon" light in your more expensive car.
FL = "fluorescent light"
Hg = "mercury vapor lamp"
GL = "Glühlampe " (Glowing light); light bulb
LED = light emitting diode

Data from Osram
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Light Emitting Diode
  

Light emitting diodes or LED's nowadays come in two variants: "Standard" LED's made from inorganic crystalline
semiconductors based on, e.g., GAAlAs, GaP or GaN and "organic" LED's or OLED's.

OLED devices are coming into their own right now (2011). They are not yet mass products for general lightning
applications but we will find out how far they will go in the near future (based on the work of possibly you and other
materials scientists and engineers; who else?).
Standard LED's have been around for more than 40 years by now. However, they used to be only red in the
beginning, see the picture below, and their efficiencies were lousy. The breakthrough came around 1990 when Shuji
Nakamura of Nichia Corporation almost single-handled introduced the GaN based blue LED. This started the
ongoing revolution of world wide lighting that will contribute in a major way to saving the planet from the climate
crisis. Of course, if you google "Nakamura" you will find a soccer player first.

The picture below gives an idea of what was happening. Nobody seem to have updated this picture but the trends
continued. The LED market is growing rapidly

In analogy to "Moore's law", "Haitz's Law" has been proposed: In every decade, the cost per lumen (unit of useful
light emitted) falls by a factor of 10, the amount of light generated per LED package increases by a factor of 20, for a
given wavelength (color) of light. Haitz also predicted that the efficiency of LED-based lighting could reach 200 lm/W
(lumen per Watt) in 2020 crossing 100 lm/W in 2010.

This is important:

More than 50% of the electricity
consumption
for lighting or

20% of the totally consumed electrical
energy

would be saved reaching 200 lm/W

So get going, young Material Scientist!

What does on need to do to make better (and cheaper) LED's?

As a first step you must learn a minimum about semiconductor physics or Halbleiterphysik and semiconductor
technology.
The links provide starting points because we are not going to do that here.
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Laser
  

All the light sources discussed so far share certain broad characteristics:

They emit either a whole spectrum, i.e. light with many colors, several spectral lines, or in the case of LED's
only one line but with a rather large half-width.
Their light may come from a small area ("point source"; e.g. standard LED), from a longish area ("fluorescent
tubes") or even from a large area (OLED's) and cannot really be processed into that parallel beam always
used for illustrating optical stuff
The light is emitted in many directions with various characteristics but never in only one direction.
The light is never fully coherent and mostly rather incoherent.
The light is mostly not polarized

Negate everything in that list (except, maybe, polarization) and you have a Laser, a device that operates on the principle
of Light Amplification by Stimulated Emission of Radiation.
Lasers are rather recent light sources; the first one was built by Maiman in 1960; for a short history use the link

We cannot go much into the principles of Lasers here. We only look at a few basic concepts and keywords..

The name "LASER" says it all. To understand the very basic principles of Lasers, we look at a sequence of a few simple
pictures

   
First we need Light Amplification. For that we need a material with two
suitable energy levels, ∆E = hν apart. Light results whenever the electron
jumps from the higher level to the lower (ground) level one with a basic
frequency of ν Hz. Note that this is not true for just any levels; the electron
may get rid of its energy in other ways, too, e.g. in indirect semiconductors.

Second we need stimulated emission, a phenomenon that was
calculated and predicted by Albert Einstein in 1916. In simple terms,
stimulated emission means that a photon with the energy ∆E, when
encountering an electron sitting on the upper energy level, stimulates it
to "fall down" and to emit a photon that is identical in wave vector, and
phase to the one that stimulates the process (and does not get
absorbed!)

 

Instead of one photon we have now two identical one. We have achieved light amplification. The two photons now
stimulate other electrons along their way to produce more photons, all being fully coherent.. A lot of light now
merges from the output.

  

The process from above, however, only works once - until all electrons that
happens to populate the upper energy level are "down".

 

For a material with a dimension of 1 = 1 cm this takes about
t = cmat /l ≈ [1/(2 · 109)] s = 0,5 ns, so we would have a rather short
light flash.

 

 or a "cw" or continuous wave Laser we obviously need to kick the
electrons up to the higher energy level - just as fast as they come down -
by "pumping" the Laser. In fact, we need to have more elctrons sitting
at the high energy level all the times than at the lower level. This is a very
unusual state for electrons called inversion.

 

Pumping requires that we put plenty of energy into the system all the time. This can be done by intense illumination
(obviously with light of somewhat higher energy than ∆E). Some Lasers of the US military were supposed to be
pumped by X-rays produced by a nuclear explosion (no joke). They would not live long but still be able to produce a
short-lived ultra-high intensity Laser beam suitable for shooting down missiles.

 Our cheap, simple and long-lasting semiconductor lasers, in contrast, are "simply" pumped by running a very large
current density (> 1000 A/cm2) through a suitable pn-junction in some direct semiconductors. This link gives an
idea of what that means.

 Note that the incoming photon could just as well kick a lower electron up, than it would be absorbed. The photon
generated at random some time later when the electron moves back down again is not adding to the desired output,
it just adds noise.
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We are not done yet. The picture above are greatly simplified because in
reality we would produce light beams running in all kinds of directions. That's
not what we want.

Just as important, the energy of the light produced would not be exactly
∆E but, roughly, ∆E ± kT since our excited electrons would also have
some thermal energy. For a good monochromatic light, an energy or
frequency spread of about 1/40 eV at room temperature is ridiculously
large, so we must do something.

 

What we do is putting the pumped material inside a "Fabry Perot" resonator. This is nothing else but two mirrors
(one with a reflectivity less than 100 %, i.e. "semi" transparent) that are exactly parallel (within fractions of a µm)
and at a distance L from each other.
The light generated then is reflected back and forth. For reasons clear to us now, only waves with λ = 2L/m; m =
1,2,3,... will "fit".
A certain part of the light impinging on the "semi" transparent mirror leaks out, forming our .now fully monochromatic
and coherent Laser beam.It propagates in one directiononly (here perpendicular to the mirrors).

   

The way to visualize that is shown here.

 

We have one standing wave right between the two mirrors. Note that the
wave length in the material is different from that in air; you must take that
into account when going through numbers.

 

Note that the picture for an organ pipe with an acoustic wave inside
would, in principlelook exactly the same. The pipe would leak some of
the wave and you hear a tone with a well defined frequency.

 

This looks pretty involved, so how come that we have ultra-cheap Lasers in DVD drives? Because you don't need
extra mirrors, you just use the internal surface of your semiconductor single crystal that reflect parts of the beam
according to the Fresnel equations. If you obtain those surfaces by cleaving down a low-index plane, they are
automatically exactly plane parallel. That makes Lasers more simple.
However, typically Lasers are far more complicated than shown here

   

An organ pipe or any longish musical instrument will not only produce a tone with one frequency ν0 but also the
harmonics or overtones m · ν0. Same for our Laser, of course, as shown below left.

A musical instrument that isn't long and slender like an organ pipe or a flute (i.e. an essentially 1-dim. system) but a
rectangular box (or a complex-shaped body shape like a violin, can contain standing waves in all directions with
many possible wavelengths. Same for our Laser; cf.. the situation in the figure on the upper right.

So depending on the exact shape of the laser, the way it's pumped, and so on and so forth, there can be more than just
one Laser mode

We needed to get to that word. so let's repeat: There can be more than just one standing wave inside a Laser
resonator, or a real laser might emit more than just one mode.

We will not discuss what kinds of Lasers we find for all kinds of applications here. There is a bewildering variety and
more and more different kinds are introduced. We just note one important item:

Increasing the frequency / energy of Lasers becomes "exponentially" difficult because with increasing photon energy
the number of ways it can be absorbed increases rapidly (there are lot of empty states far above some densely
populated ground level onto which electrons could be "kicked") but only one state is useful for lasing!
That's why there aren't so many UV Laser around and no X-ray Lasers yet.
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5.3.2 Processing Light

Conventional Lenses, Mirrors and Prisms

Little needs to be said about the Lenses, Mirrors, and Prisms. The basics have been covered before, here we just look
at a few specifics to illustrate a few additional points

Below are two pictures that demonstrate what one can do with lenses and mirrors. They are, after all, still the most
important components of most optical systems

Here is a "lens" for a modern production "stepper" i.e.
the machine that projects the desired structure onto a
light sensitive layer (the resist) on a Si wafer. Steppers
are crucial for making Si microchips. Here is the link
for details.
The producer of this lens is Carl Zeiss SMT AG ,
Germany.

Although designed for manufacturing on a nanoscopic
scale, a lithography stepper lens is not small. The
Starlith 1900i weighs more than a metric ton, stands
several feet tall and is as big around as a tree trunk. A
catadioptric lens consisting of reflecting mirrors and
refractive optics enables volume semiconductor
production at 40 nm resolution.
The stepper lens has a numerical aperture of NA =
1.35 (huge!) and is intended for use in immersion
lithography, a technique that replaces the air gap
between wafer and stepper with water or another fluid.
Zeiss notes that the device is, in some sense, the end
of the art.
The lens is designed for an UV light source with a
wave length of 193 nm, which needs an ArF (yes,
"Argon Fluoride") Laser. Remember that the visible
spectrum ends around 400 nm. UV radiation from the
sun, for comparison, spans the range (315 - 400) nm
("Ultraviolet A") and (280 - 315) nm ("Ultraviolet B").

That is the kind of "projector" that will move into chip production after lenses have reached the end of the art. It
needs to operate in vacuum because air starts to absorb light below around 185 nm.

The " NXE:3100" lithography machine from ASM corporation, employs extreme-ultra-violet (EUV) light with a
wave length of 13,5 nm to provide an imaging capability close to 20 nm. EUV will enabke 27 nm resolution
down to to below 10 nm eventually. How one makes an intensive 12.5 nm deep-UV light source is a rather
interesting topic in its own right.
The "optics" is based entirel on mirrors - with essentially atomically flat surfaces .
The machine shown is a kind of pre-production prototype that is presently (2011) tested.
It is essentially still a slide projector but a bit more expensive (around (10 - 20) Mio € would be my guess).
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Note added July 2021:
As it turns out, I was a bit conservative in my coist estimation. You can buy the "most complicated machine"
(New York Times) now for about 150.Mio $

From a Materials Science and Engineering point of view, making those machines is a big challenge but nothing more
shall be said about them here.
It goes without saying, however, that for any non-trivial system employing lenses you need anti-reflection coatings;
check your Fresnel equations!

You also need anti-reflection coatings for solar cells (reflected light cannot produce electricity) and in numerous or
better almost all "optical" devices. .
Here is the (known) working principle of a simple antireflection coating (for one wavelength and angle of incidence).
Since the two beams reflected from the surface and the interface cancel each other exactly because of the 180o

phase difference, the incoming beam must go into the material in its entirety. If you noticed the little paradox
contained in this statement, activate this link.

Schematic view (don't look too closely at phases) of the working
of an antireflection coating.

Of course, if you want to minimize reflection for a whole range of wavelengths and angles of incidence, you have a
problem. The answer to the problem, as ever so often in Materials Science is: compromise! Achieving perfect
antireflection for those conditions is next to impossible or at least expensive.
 

Polarizers, Diffraction Gratings and Filters

Now that we have lenses and mirrors covered, we need polarizers, diffraction gratings, and filters next.

  
We have already covered a lot of ground with respect to polarization and encountered some ways to produce a
polarized beam. There are two basic ways to achieve linear polarization:

Absorbing polarizers: the unwanted polarization is absorbed
Beam-splitting polarizers: the unpolarized beam is split into

two beams with opposite polarization states.

Absorbing linear polarizers are essentially of the "array of conducting rods" type as outlined before. Not much more
needs to be said here.

Foil polarizers of this type are used most of the time- whenever utmost quality is not the concern. They are essentially
based on Lang's old invention.

Instead of (birefringent) herapathite crystals embedded in a stretched plastic foil, we now use aligned (again by
stretching) polyvinyl alcohol (PVA) foils and dope the molecules with Iodine. In other words, we produce a more or
less conducting polymer in one direction. Polarizing foils of this type are most common type of polarizers in use, for
example for sunglasses, photographic filters, and liquid crystal displays. They are also much cheaper than other
types of polarizer.
A modern type of absorptive polarizer is made of elongated silver nanoparticles embedded in thin (≈ 0.5 mm) glass
plates. These polarizers are more durable, and can polarize light much better than plastic Polaroid film, achieving
polarization ratios as high as 100,000:1 and absorption of correctly-polarized light as low as 1.5%. Such glass
polarizers perform best for short-wavelength infrared light, and are widely used in optical fiber communications.

Beam-splitting polarizers come in many varieties and two basic types:
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1. Use simple materials and employ the Brewster angle.
The reflected light then will be linearly polarized (TE case) because the TM components of the incident light are not
reflected at all (figure it out yourself!)

The quality improves with the number of reflections but the
intensity goes down.

Doable but not very elegant. Think about using this method for sunglasses or 3-D glasses. On the other hand, if you
need to polarize in the deep UV or IR, it might be your only choice.

2. Use tensor materials or in other words effects like birefringence.

Use birefringence, e.g. in the form of a Nicole prism, Wollaston prism, or a number of other "Prisms".

Nicol prism

Wollaston prism

All those "prisms" use birefringent (or tensor) materials, typically the easy to get or make calcite CaCO3. The
incoming beam splits into an ordinary and extraordinary beam that can be fully polarized. In the Nicol prism the
geometry is chosen in such a way that the extraordinary beam undergoes total reflection at the interface where the
two parts of the crystal are joined. The ordinary beam is not only full polarized but continues in the same direction
as the incoming beam. The Nicole prism is therefore relatively easy top use in optical equipment.

Achieving circular polarization is also "easy" in principle. All you need is a linear polarizer and a "quarter wave
plate".

A "quarter wave plate" is a (typically thin) piece of material, where a polarized beam goes in, and two beams come
out with the following properties:

They two beams are linearly polarized with polarization directions perpendicular to each other1.
The two beams have equal intensities2.
One beam is phase shifted by exactly a quarter wave length (λ/4) with respect to the other.3.

The two waves thus produced superimpose to a circular polarized wave as shown below:
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The incoming beam is polarized at 45o relative to the principal polarization directions in the anisotropic medium.
The two beams exciting the medium produce a circular polarization as shown in the animation (© Wikipedia)

How is it done? Let's look at the "old" and slightly modified picture above to understand how it is done in principal.

We need an anisotropic material oriented with respect to the optical axis in such a way that the ordinary and
extraordinary beam are parallel. The two beam than will automatically have defined linear polarizations at right angle
to each other.; condition 1 is met.
We polarize the incoming beam linearly in such a way that its polarization direction is at 45o to the polarization
direction in the anisotropic crystal. It then will split in two beams that have equal intensities. Condition 2 is met.
The ordinary and extraordinary beam travel with different velocities inside the material. The ordinary beam - that's
why is is called "ordinary" - travels with cO = co/no but the extraordinary beam does not; it travels with a speed cEO
= co/ne. Whatever the "extraordinary" index of refraction ne will be, after traveling some distance d the phase shift
between the two waves will be λ/4 Obviously we have

d  =  
λ

4( ne –  no )

So all we have to do is to cut our anisotropic material to the thickness d and condition 3 is met.

Looks complicated? Well, that's because it is complicated. In principle and whenever you make your "lambda quarter
plate" from a single crystal (like mica; the most prominent crystal for doing this)

So next time you watch a 3-D movie, gives those (obviously cheap) glasses you're being handed a closer look. They
contain two circular polarizers: one eye with a left-handed polarization, the other one with a right-handed one. And
obviously they are really cheap. So how is it done?

   

Phase Shifters and Holograms

We want to shift the phase of some light beam for various reasons; here we look at just two:

We wan to do sub-micron lithography for making microelectronic chips with structure sizes dmin
considerably smaller than the wave length λ
We wan to make a hologram

Let's look at phase shift masks for the ultimate in lithography first.

Right above we have data for the ultimate lens for lithography: Numerical aperture NA = 1,35, λ = 193 nm, so dmin
= λ/ 2NA = 71,5 nm; larger than what we want to get. So how are we going to beat the limits to resolution dictated
by diffraction optics? By using a phase shifting mask (PSM). The principle is shown in the figure below:
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Remembering that waves "bend" around corners, it becomes clear that if two corners are very close together as in
the schematic outline of a mask (or reticle) used for making the smallest possible structures on a chip, the "around
the corner" waves overlap and from an electrical field strength and intensity (field strength squared) profile as
schematically shown. The two structures are no longer fully resolved; there is an appreciable intensity below the
middle light blocking layer on the mask.
Now we introduce a "phase shifter", something the shited the phase of the light going through the right part of the
struntre by 180o. This changes the sign of the electricl field strength as shown.

There is far more but let's forget it for this leture course. Go to the next one.
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5.3.3 Detecting Light

The topic would be quite interesting. It is one of the corner stones of modern communication based on light running
down fibre optical cables. It encompasses topics like:

How the eye works.
The Eye and Quantum Efficiency.
Photographic film
Detecting with photomultipliers
Detecting with semiconductors.
Bolometers.
Single photon detection
Detecting high frequency modulations.
Specialities

However! The powers that are in their undoubtedly (almost) infinite wisdom decided to shorten the time for lecture
courses by 2 - 3 weeks. There is simply not enough tome to look at this topic.
Sorry
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5.3.4 Summary to: Optical Components

Light Sources
Hot bodies (tungsten filaments) in light bulbs and
plasma discharge in fluorescent tubes

Inefficient light bulbs still dominates when this
lecture course started (2010)

LEDs have taken over when this hyperscript was
finalized (2019)

 

Mot included above is the Laser.  

You must learn about the Laser somewhere else  

 

Processing light
with, for example, conventional lenses, mirrors and
prism, anti-reflection coatings

Even simple light processors like lenses (and the
rest from above) might be extremely complex
materials engineering products today. Just look at
the picture of a (by now (2019) outdated lens for
microelectronic lithography-

Polarizers, diffraction gratings and filters add another
layer of complexity.

 

The list goes on, with, e.g. phase shifters and
whatever is needed for doing holgraphy or...

 

Laser "beam forming", modulation, fultr-high speed
detection, ...
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5.4.1 Summary to: 5.1 Optics

Know your numbers and relations for visible light!
For the propagation of light:
use the wave model
For the generation and disappearance (=
absorption) of light:
use the photon model

Snellius law:
n = sinα/sinβ with α, β the angle of incidence
or propagation, resp.

Wavelengths: λ ≈ 400 nm - 800 nm.

λmat = λ0/n.  

Frequency: ν≈ 10 15 Hz.  

Index of refraction: n = εr½ ≈ 1,5 - 2,5  

Energy E ≈ 1,8 eV - 3,2 eV.  

Dispersion relation: c0 = ν λ 0 = 3 · 108 m/s
cMat = ν λ 0/n(λ)

 

     
Know yout basic equations and terminology  

Coherent monochromatic plane wave
E and H perpendicular and in phase

    
  

E(r,t)  
H(r,t) 

 =  E0
 H0

    · exp{i(kr –ωt)}

 

    
Reflection always with "angle in" = "angle out".  

Refraction is the sudden "bending" or "flexing" of light
beams at the interface

 

Diffraction is the continous "bending" of light beams
around corners; interference effects.

 

    

Geometric optics
Key paramters

Focal length f and
numerical aperture NA of lenses, mirrors.
Image formation by simple geometric constration  

Various aberrations (spherical. chromatic, astigmatism,
coma, ...) limit performance.

 

 
Wave optics
Huygens principle: and interference

 

 

Ultimate limit to resolution  

   
  

dmin  ≈ 
λ

2NA

 

    
Know your basic types of waves:  

(Running, coherent, monochromatic) plane wave.  

Standing waves = superposition of plane waves.  

Incoherent, multichromatic real waves  
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Relation s between electrical field E, magnetic field H and
Poynting vector (energy flow vector) S = E × H

Welect  = 
ε0 · E2

2 
Wmag  = 

μ0 · H2

2 

[Welect; magn]  = [Ws m–3]

E0  = 




μrμ0

εrε0





½ 
· H0  = Zw · H0 

 

<S>  = 
E0H0

2
 = 

E02

Zw

 

    
This equation links energy flow (easy in photon picture)
to field strength in wave picture.

 

Zw = wave impedance of the medium.
Zw(vacuum) = 376,7 Ω

 

     
Polarization = key to "advanced" optics.
Simple case: linear polarization.

 

Plane of polarization contains E-vector and S (k) vector.  

Any (coherent) wave is polarized but net polarization of
many waves with random polarization is zero!

 

Light intensity (∝ E2) between polarizers at angle α
scales with (cosα)2.

 

General case: elliptical polarization; important are the two
extremes: linear and circular polarization.

 

For circular polarizaiton the E-vector rotates on a circle
while moving "forward". This results from a
superposition of two plane waves with E-vectors ar right
angles and a phase difference of π/2.

 

Technically important (3-dim Cinema; Lab optics)  

The task:
Calculate and understand intensities, angles, phases,
polarization and attenuation (damping) of the various
light beams shown from the materials properties

Still assuming a perfectly flat surface

First step: Decompose impinging light into two waves
with polarization in he interface plane (TE case) or at
right angles (TM case)

 

Energy conservation yields for the intensities:  

Itr(z = 0)  =  Iin – Ire
 

 
Boundary conditions as shown in the figure involve the
"dielectric constant ε and thus the so far only relevant
material property.

 

Considering energy (proportional to E2) and
momentum (proportional to k2") conservation for the
TE and TM case separately yields the Fresnel
equations that provide the answers to the
questions above

 

 A wealth of insights and relations follow, e.g. or field
strength E or intensities I:
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Eref

Ein

  =  – 
n – 1

n + 1
    

Iref

Iin

 
 =  





n – 1

n + 1





2

 

 one consequence as example for the power of these
equations: n = 2 means that almost 10 % of the
intensity will be reflected, implying that for optical
instruments you must provide some "anti-reflection"
coating.

 

 
Using the complex (and frequency dependent "dielectric
constant ε(ο) = ε' + iε'' yields the complex index of
refraction

 

n2  = 
1

2





ε' 2  + ε'' 2 

½ 
 +  ε'





κ2  = 
1

2





ε' 2  + ε'' 2

½ 
 –  ε'





 
n*(ο)  =  n + i κ

 

The imaginary part κ describes the attenuation
(damping) of the transmitted wave in the material.

 

   

Polarization and Material2. How to polarize a light beam

1. Geometry. Use Fresnel equations to produce a
polarzed beam under specific angles ("Brewsater
angle")
1. Polarization foils = alined conducting rods (of
possibly molecular size) "short-circuiting" the electrical
field in on direction.

 

3. "Tensor" materials with optical anisotropy  

Theory can an get rather involved; products can be
extremely simple and cheap (e.g. circular polarizer in 3-D
movie glasses)

 

 

Not so perfect materials and properties like specular and
diffuse Reflection, transparency, Translucency, Opacity.

Light is scattered at small things in all directions and
the scattering of light is the major topic encountered if
we look at not-so-perfect materials
The picture illustrates:
Specular and diffuse reflection at the surface.
Scattering of the transmitted light (running in different
directions) at defects or imperfections contained in the
material (fat droplets in milk, air bubbles in glass, ...).
Specular and diffuse reflection at the internal surface
the light is coming out off. This is described by a
(different) polar diagram characterizing this surface.

 

Scatter mechanism depend on the size lsca of the
scatterer" relative to the wavelength:
lsca << λ: The extreme case would be scattering at single
atoms or molecules. Proper nanoparticles also belong into
this group. This kind of scattering is called Rayleigh
scattering
lsca >>λ: No problem, we covered that already. Just look at
any part of the sample by itself.
lmat ≈ λ: Now we have a problem. What will happen in this

 

Advanced Materials B, part 1 - script - Page 234



case is difficult to deal with and no general rules apply. This
kind of scattering is called Mie scattering

     

Generating Light
Two basic cases: Luminescence: General name for

"cold" light production
   
Fluorescence:

 

Light production shortly
after energy input. Short
life time of excited
level (< µs)

   
Phosphorescence:

  

Light production long
after energy input. Long
life time of excited
level (> ms)

Light from hot bodies. Planck radiation law applies.
Efficiency tends to be low

Light from "cold" bodies or luminescence  

There are many types of cold light production. Of
utmost importance is electroluminescence or, to use
another word for essentially the same thing, radiant
electron - hole recombination in semiconductors.
In yet other words: It's the LED, the light emitting
diode..

 

     

Specialities
Fresnel Lens
Optical Activity
Faraday effect
Kerr Effect
Pockels Effect

Forget it. The list names some, there are many more.

That's where serious "optics and material" starts. This
would need another full lecture course

 

     

Light Sources
Hot bodies (tungsten filaments) in light bulbs and
plasma discharge in fluorescent tubes

Inefficient light bulbs still dominates when this
lecture course started (2010)

LEDs have taken over when this hyperscript was
finalized (2019)

 

Mot included above is the Laser.  

You must learn about the Laser somewhere else  

 

Processing light
with, for example, conventional lenses, mirrors and
prism, anti-reflection coatings
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Processing light
with, for example, conventional lenses, mirrors and
prism, anti-reflection coatings

Even simple light processors like lenses (and the
rest from above) might be extremely complex
materials engineering products today. Just look at
the picture of a (by now (2019) outdated lens for
microelectronic lithography-

Polarizers, diffraction gratings and filters add another
layer of complexity.

 

The list goes on, with, e.g. phase shifters and
whatever is needed for doing holgraphy or...

 

Laser "beam forming", modulation, fultr-high speed
detection, ...
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